ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:66KB ,
资源ID:7199923      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7199923.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(第九讲“牛吃草”问题.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第九讲“牛吃草”问题.doc

1、奥博教育培训 第九讲 “牛吃草”问题 有这样的问题,如:牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。那么它可供21头牛吃几周? 这类问题称为“牛吃草”问题。 解答这类问题,困难在于草的总量在变,它每天、每周都在均匀地生长,时间越长,草的总量越多。草的总量是由两部分组成的:(1)某个时间期限前草场上原有的草量;(2)这个时间期限后草场每天(周)生长而新增的草量。因此,必须设法找出这两个量来。 下面就用开头的题目为例进行分析。(见下图) 从上面的线段图可以看出23头牛9周的总草量比27头牛6周的总草量多,多出部分相当于3周新生长的草量。为了求出

2、一周新生长的草量,就要进行转化。27头牛6周吃草量相当于27×6=162头牛一周吃草量(或一头牛吃162周)。23头牛9周吃草量相当于23×9=207头牛一周吃草量(或一头牛吃207周)。这样一来可以认为每周新生长的草量相当于(207-162)÷(9-6)=15头牛一周的吃草量。 需要解决的第二个问题是牧场上原有草量是多少?用27头牛6周的总吃草量减去6周新生长的草量(即15×6=90头牛吃一周的草量)即为牧场原有的草量。 所以牧场上原有草量为26×6-15×6=72头牛一周的吃草量(或者为23×9-15×9=72)。 牧场上的草21头牛几周才能吃完呢?解决这个问题相当于把21头牛分成两

3、部分。一部分看成专吃牧场上原有的草,另一部分看成专吃新生长的草。但是新生的草只能维持15头牛的吃草量,且始终保持平衡(前面已分析过每周新生的草恰够15头牛吃一周)。故分出15头牛吃新生长的草,另一部分21-15=6头牛去吃原有的草。所以牧场上的草够吃72÷6=12周,也就是这个牧场上的草够21头牛吃12周。 例2:一只船发现漏水时,已经进了一些水,水匀速进入船内。如果10人淘水,3小时淘完;如5人淘水8小时淘完。如果要求2小时淘完,要安排多少人淘水? 分析与解答:这类问题,都有它共同的特点,即总水量随漏水的延长而增加。所以总水量是个变量。而单位时间内漏进船的水的增长量是不变的。船内原有的水

4、量(即发现船漏水时船内已有的水量)也是不变的量。对于这个问题我们换一个角度进行分析。 如果设每个人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30。 船内原有水量与8小时漏水量之和为1×5×8=40。 每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。 船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量,3小时漏进水量相当于3×2=6人1小时淘水量。所以船内原有水量为30-2×3=24。 如果这些水(24个单位)要

5、2小时淘完,则需24÷2=12人。但与此同时,每小时的漏进水量又要安排2人淘出,因此共需要12+2=14人。 从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量。有了这两个量,问题就容易解决了。 例3:12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场每天生长草量相等)? 分析:解量的关键在于求出一公亩一天新生长的草量可供几头牛吃一天,一公亩原有的草量可供几头牛吃一天。 12头牛28天吃完10公亩牧场上

6、的牧草,相当于1公亩原来的牧草加上28天新生产的草可供33.6头牛吃一天(12×28÷10=33.6)。 21头牛63天吃完30公亩牧场上的牧草,相当于1公亩原有的草加上63天新生长的草可供44.1头牛吃一天(63×21÷30=44.1)。 1公亩一天新生长的牧草可供0.3头牛吃一天,即: (44.1-33.6)÷(63-28) = 0.3(头) 1公亩原有的牧草可供25.2头牛吃一天,即: 33.6-0.3×28=25.2(头) 72公亩原有牧草可供14.4头牛吃126天,即: 72×25.2÷126=14.4(头) 72公亩每天新生长的草量可供21.6头牛吃一天

7、即: 72×0.3=21.6(头) 所以72公亩牧场上的牧草可供36(=14.4+21.6)头牛吃126天,问题得解。 解:一公亩一天新生长草量可供多少头牛吃一天? (63×21÷30-12×28÷10)÷(63-28)=0.3(头) 一公亩原有牧草可供多少头牛吃一天? 12×28÷10-0.3×28=25.2(头) 72公亩的牧草可供多少头牛吃126天? 72×25.2÷126+72×0.3= 36(头) 例4:一块草地,每天生长的速度相同。现在这片牧草可供16头牛吃20天,或者供80只头吃12天。如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛

8、与60只羊一起吃可以吃多少天? 分析:由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天的吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。 解:60只羊每天吃草量相当于多少头牛每天的吃草量? 60÷4=15(头) 草地原有草量与20天新生长草量可供多少头牛吃一天? 16×20=320(天) 80只羊12天的吃草量可供多少头牛吃一天? 80÷4×12=240(头) 每天新生长的草量够多少头牛吃一天? (320-240)÷(20-12)=10(头) 原有草量可够多少头牛吃一天? 320-20×10

9、120(头) 原有草量可供10头牛与60只羊吃多少天? 120÷(60÷4+10-10)=8(天) 例5:一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干。若要求6天抽干,需要多少台同样的抽水机? 解:水库原有的水与20天流入水可供多少台抽水机抽1天? 20×5=100(台) 水库原有水与15天流入的水可供多少台抽水机抽1天? 6×15=90(台) 每天流入的水可供多少台抽水机抽1天? (100-90)÷(20-15)=2(台) 原有的水可供多少台抽水机抽1天? 100-20×2

10、60(台) 若6天抽完,共需抽水机多少台? 60÷6+2=12(台) 例6:有三片草场,每亩原有草量相同,草的生长速度也相同。三片草场的面积分别为亩、10亩和24亩。第一片草场可供12头牛吃4周,第二片草场可供21头牛吃9周。问:第三片草场可供多少头牛吃18周? 用方程解: 解:设每亩草场原有的草量为a,每周每亩草场新生长草量为b。依题意 第一片草场(亩)原有的草与4周新生长的草量之和为: ()a+(4×)b 每头牛每周的吃草量为(第一片草场亩): []÷(12×4)== (1) 第二片草场(10亩)原有的草与9周生长出来的草为: 10a+

11、10×9)b 每头牛每周的吃草量为:(第二片草场) (2) 由于每头牛每周吃草量相等,列方程为: (3) 5a=60b a=12b(表示1亩草场上原有草量是每周新生长草量的12倍) 将a=12b代入(3)的两边得到每头牛每周吃草量为。 设第三片草场(24亩)可供x头牛吃18周吃完,则由每头牛每周吃草量可列出方程为: (4) x=36

12、答:第三片草场可供36头牛18周食用。 这道题列方程时引入a、b两个辅助未知数,在解方程时不一定要求出其数值,在本题中只需求出它们的比例关系即可。 习 题 九 1. 一场牧场长满草,每天牧草都均匀生长。这片牧场可供10头牛吃20天,可供15头牛吃10天。问:可供25头牛吃多少天? 2. 22头牛吃33亩草地上的草,54天可以吃完;17头牛吃28亩同样的草地上的草,84天可以吃完。问:同样的牧草40亩可供多少头牛食用24天?(每亩草地原有草量相等,草生长速度相等) 3. 有一牧场,17头牛30天可将草吃完;19头牛则24天可以吃完。现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完。问:原来有多少头牛吃草(草均匀生长)? 4. 现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水? 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服