ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:638KB ,
资源ID:7176594      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7176594.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习-直线与圆锥曲线问题的处理方法(1).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习-直线与圆锥曲线问题的处理方法(1).doc

1、湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习:直线与圆锥曲线问题的处理方法(1)高考要求 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等 突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能 重难点归纳 1 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法 2 当直线与圆锥曲线相交时 涉及弦长问题,常用

2、“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化 同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍 典型题例示范讲解例1如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求AMN面积最大时直线l的方程,并求AMN的最大面积 命题意图 直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题 本题考查处理直线与圆锥曲线相交问题的第一种方法“韦达定理法” 知识依托 弦长公式、三角形的面积公式、不

3、等式法求最值、函数与方程的思想 错解分析 将直线方程代入抛物线方程后,没有确定m的取值范围 不等式法求最值忽略了适用的条件 技巧与方法 涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算 解法一 由题意,可设l的方程为y=x+m,其中5m0 由方程组,消去y,得x2+(2m4)x+m2=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(2m4)24m2=16(1m)0,解得m1,又5m0,m的范围为(5,0)设M(x1,y1),N(x2,y2)则x1+x2=42m,x1x2=m2,|MN|=4 点A到直线l的距离为d= S=2(5+m)

4、,从而S2=4(1m)(5+m)2=2(22m)(5+m)(5+m)2()3=128 S8,当且仅当22m=5+m,即m=1时取等号 故直线l的方程为y=x1,AMN的最大面积为8 解法二 由题意,可设l与x轴相交于B(m,0), l的方程为x = y +m,其中0m5 由方程组,消去x,得y 24 y 4m=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(4)2+16m=16(1+m)0必成立,设M(x1,y1),N(x2,y2)则y 1+ y 2=4,y 1y 2=4m,S= 4=4S8,当且仅当即m=1时取等号 故直线l的方程为y=x1,AMN的最大面积为8 例2已知双曲线C 2

5、x2y2=2与点P(1,2)(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点 (2)若Q(1,1),试判断以Q为中点的弦是否存在 命题意图 第一问考查直线与双曲线交点个数问题,归结为方程组解的问题 第二问考查处理直线与圆锥曲线问题的第二种方法“点差法” 知识依托 二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式 错解分析 第一问,求二次方程根的个数,忽略了二次项系数的讨论 第二问,算得以Q为中点弦的斜率为2,就认为所求直线存在了 技巧与方法 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化 解 (1

6、)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点 当l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点()当2k20,即k时=2(k22k)24(2k2)(k2+4k6)=16(32k)当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点 当0,即k,又k,故当k或k或k时,方程(*)有两不等实根,l与C有两个交点 当0,即k时,方程(*)无解,l与C无交点 综上知 当k=,或k=,或k不存在时,l与C只有一个交点;当k,或

7、k,或k时,l与C有两个交点;当k时,l与C没有交点 (2)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2两式相减得 2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=22(x1x2)=y1y1即kAB=2但渐近线斜率为,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在 例3已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OPOQ,|PQ|=,求椭圆方程 解 设椭圆方程为mx2+ny2=1(m0,n0), P(x1,y1),Q(x2,y2)由

8、得(m+n)x2+2nx+n1=0,=4n24(m+n)(n1)0,即m+nmn0,由OPOQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,+1=0,m+n=2 又22,将m+n=2,代入得mn=由、式得m=,n=或m=,n=故椭圆方程为+y2=1或x2+y2=1 学生巩固练习 1 斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为( )A 2B C D 2 抛物线y=ax2与直线y=kx+b(k0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )A x3=x1+x2B x1x2=x1x3+x2x3 C x1

9、+x2+x3=0D x1x2+x2x3+x3x1=03 正方形ABCD的边AB在直线y=x+4上,C、D两点在抛物线y2=x上,则正方形ABCD的面积为_ 4 已知抛物线y2=2px(p0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|2p (1)求a的取值范围 (2)若线段AB的垂直平分线交x轴于点N,求NAB面积的最大值 参考答案:1 解析 弦长|AB|= 答案 C2 解析 解方程组,得ax2kxb=0,可知x1+x2=,x1x2=,x3=,代入验证即可 答案 B3 解析 设C、D所在直线方程为y=x+b,代入y2=x,利用弦长公式可求出|CD|的长,利用|CD|的长等于两平行直线y=x+4与y=x+b间的距离,求出b的值,再代入求出|CD|的长 答案 18或504 解 (1)设直线l的方程为 y=xa,代入抛物线方程得(xa)2=2px,即x22(a+p)x+a2=0|AB|=2p 4ap+2p2p2,即4app2又p0,a (2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),由(1)知,y1=x1a,y2=x2a,x1+x2=2a+2p,则有x=p 线段AB的垂直平分线的方程为yp=(xap),从而N点坐标为(a+2p,0)点N到AB的距离为从而SNAB=当a有最大值时,S有最大值为p2 4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服