1、传感器原理及工程应用习题参考答案 篇一:传感器原理及工程应用第四版(郁有文)课后 第一章 传感与检测技术的理论根底 1 什么是测量值的绝对误差、相对误差、援用误 差? 答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 援用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相关于仪表满量程的一种误差。援用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2 什么是测量误差?测量误差有几种表示方法? 它们通常应用在什么场合? 答:测量误差是测得值
2、与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,援用误差也是相对误差的一种表示方法。在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。在计算相对误差时也必须明白绝对误差的大小才能计算。 采纳绝对误差难以评定测量精度的高低,而采纳相对误差比较客观地反映测量精度。 援用误差是仪表中应用的一种相对误差,仪表的精度是用援用误差表示的。 3 用测量范围为-50+150kPa的压力传感器测量 140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和援用误差。 解:绝对误差?142?140?2kPa 实际相对误差 标称相对误差 援用
3、误差?142?140?100%?1.43%140 ?142?140?100%?1.41%142 142?140?100%?1%150?(?50) ? 4 什么是随机误差?随机误差产生的缘故是什 么?如何减小随机误差对测量结果的阻碍?答:在同一测量条件下,屡次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。 随机误差是由特别多不便掌握或临时未能掌握的微小要素(测量装置方面的要素、环境方面的要素、人员方面的要素),如电磁场的微变,零件的摩擦、间隙,热崎岖,空气扰动,气压及湿度的变化,测量人员感受器官的生理变化等,对测量值的综合阻碍所造成的。 关于测量列中的某一个测得值来说,
4、随机误差的出现具有随机性,即误差的大小和符号是不能预知的,但当测量次数增大,随机误差又具有统计的规律性,测量次数越多,这种规律性表现得越明显。因而一般可以通过增加测量次数可能随机误差可能出现的大小,从而减少随机误差对测量结果的阻碍。 5 什么是系统误差?系统误差可分哪几类?系统 误差有哪些检验方法?如何减小和消除系统误差? 答:在同一测量条件下,屡次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差。 系统误差可分为恒值(定值)系统误差和变值系统误差。误差的绝对值和符号已确定的系统误差称为恒值(定值)系统误差;绝对值和符号变化的系统误差称为变值系统误差,变值
5、系统误差又可分为线性系统误差、周期性系统误差和复杂规律系统误差等。 在测量过程中构成系统误差的要素是复杂的,通常人们难于查明所有的系统误差,觉察系统误差必须按照详细测量过程和测量仪器进展全面的细心的分析,这是一件困难而又复杂的工作,目前还没有可以适用于觉察各种系统误差的普遍方法,只是介绍一些觉察系统误差的一般方法。如实验比照法、剩余误差观察法,还有准那么检查法如马利科夫判据和阿贝检验法等。 由于系统误差的复杂性,因而必须进展分析比较,尽可能的找出产生系统误差的要素,从而减小和消除系统误差。1. 从产生误差根源上消除系统误差;2.用修正方法消除系统误差的阻碍;3. 在测量系统中采纳补偿措施;4.
6、可用实时反响修正的方法,来消除复杂的变化系统误差。 6 什么是粗大误差?如何推断测量数据中存在粗 大误差? 答:超出在规定条件下预期的误差称为粗大误差,粗大误差又称忽略误差。此误差值较大,明显歪曲测量结果。 在判别某个测得值是否含有粗大误差时,要特别慎重,应作充分的分析和研究,并按照判别准那么予以确定。通常用来推断粗大误差的准那么有:3?准那么(莱以特准那么);肖维勒准那么;格拉布斯准那么。 7 什么是直截了当测量、间接测量和组合测量? 答:在使用仪表或传感器进展测量时,测得值直截了当与标准量进展比较,不需要通过任何运算,直截了当得到被测量,这种测量方法称为直截了当测量。 在使用仪表或传感器进
7、展测量时,首先对与测量有确定函数关系的几个量进展直截了当测量,将直截了当测得值代入函数关系式,通过计算得到所需要的结果,这种测量称为间接测量。 假设被测量必须通过求解联立方程组求得,如:有假设干个被测量y1,y2,ym,直截了当测得值为x,x12,?,xn,把被测量与测得值之间的函数关系列成方程组,即 x1?f1(y1,y2,?,ym)?x2?f2(y1,y2,?,ym)? xn?fn(y1,y2,?,ym)?篇二:传感器原理及工程应用习题参考答案1 传感器原理及工程应用习题答案 王丽香 第1章 传感与检测技术的理论根底(P26) 13 用测量范围为50150kPa的压力传感器测量140kPa
8、的压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和援用误差。 解: 已经明白: 真值L140kPa 测量值x142kPa 测量上限150kPa 测量下限50kPa 绝对误差 x-L=142-140=2(kPa) 实际相对误差 标称相对误差 援用误差 ? ?L?x 21402142 ?1.43 ?1.41 ? ? 测量上限测量下限 2150(50) ?1 110 对某节流元件(孔板)开孔直径d20的尺寸进展了15次测量,测量数据如下(单位:mm): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40
9、 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准那么推断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n15时,假设取置信概率P0.95,查表可得格拉布斯系数G2.41。 那么 G?d20?2.41?0.0327?0.0788(mm)?v7?0.104, 因而d7为粗大误差数据,应当剔除。然后重新计算平均值和标准偏向。 当n14时,假设取置信概率P0.95,查表可得格拉布斯系数G2.37。 那么 G?d20?2.37?0.0161?0.0382(mm)?vi,因而其他14个测量值中没有坏值。 计算算
10、术平均值的标准偏向 ?d3?d ? 20 ? ?0.0043(mm) ?3?0.0043?0.013(mm) 20 因而,测量结果为:d20?(120.411?0.013)(mm) 114 交流电路的电抗数值方程为 X?L? 1 (P?99.73%) ?C 当角频率?1?5Hz,测得电抗X1为0.8?; 当角频率?2?2Hz,测得电抗X2为0.2?; 当角频率?3?1Hz,测得电抗X3为?0.3?。 试用最小二乘法求电感L、电容C的值。 解法1: ?L? 1 ?C ,设x?L,y? 1C ,那么:0.8?5x? 151 ?y? ? 0.2?2x?y? 2? ?0.3?x?y? ? ?5? 因而
11、,系数矩阵为A?2 ?1? 1? 5?1?, ?2?1? ?x?y? ?0.8? ? 直截了当测得值矩阵为L?0.2, ?0.3? ?最小二乘法的最正确可能值矩阵为X?(A?A)A?L。 ?1 ? ?5? 其中,A?A? ?1?5 303 31.29 2 12 ?51?2?1?1?1? 5? 1?30 ?2?3?1? 3? ? 1.29? A?A?30?1.29?3?3?29.0?0 ?1 因而,(A?A)? ?A11?A?A?A121A21?1?1.29?A22?29.7?3?3? 30? ?5?A?L? ?1?5 2 12 ?x?y? ? 1?0.8?4.1?0.2? ?0.04?0.3?
12、1? ? ?1.29?29.7?31 ?3?30? ?因而X? ?4.1?0.182? ? ? ?0.455?0.04? 因而, L?x?0.182H C? 1y? 1?0.455 ?2.2(F) 解法2:?L? 1 ?C ,设x?L,y? 1C ,那么: 151?y? 0.8?5x? ? 0.2?2x?y? 2? ?0.3?x?y? ?5 a12? a22?2?a32?1 ? 1? 5?1?, 2?1? ?a11 ? 因而,系数矩阵为A?a21 ?a31 那么,由(139)式决定的正规方程为 ?a1a1?x?a1a2?y?a1l? ? ?a2a1?x?a2a2?y?a2l? 其中, ?a1a
13、1?a11a11?a21a21?a31a31?52?22?12 ?a1a2?a11a12?a21a22?a31a32 ?5? 15?2? ?30 12 ?1?1?3 ?a2a1?a12a11?a22a21?a32a31?3 ?a2a2?a12a12?a22a22?a32a32 ?1?1?2 ?1?1.29 ?5?2? 2 2 ? ?a1l?a11l1?a21l2?a31l3 ?a2l?a12l1?a22l2?a32l3 30x?3y?4.1 ?5?0.8?2?0.2?1?(?0.3)?4.1 ?15?0.8? 12 ?0.2?1?(?0.3)?0.04 因而,? ?3x?1.29y?0.04
14、因而,? ?x?0.18?y?0.455 因而, L?x?0.182H C? 1y ?2.2F第2章 传感器概述(P38) 25 当被测介质温度为t1,测温传感器示值温度为t2时,有以下方程式成立: t1?t2?0 dt2d? 。 当被测介质温度从25突然变化到300时,测温传感器的时间常数?0120s,试确定通过300s后的动态误差。 已经明白:t1?t2?0 dt2d? ,t1? ?25?300 (t?0)(t?0) ,?0?120s 求:t=350s时,t1?t2? 解: 灵敏度k=1时,一阶传感器的单位阶跃响应为y(t)?1?e?t。 类似地,该测温传感器的瞬态响应函数可表示为:t2(
15、?)?25?(300?25)?(1?e ?350? )?285.15(C)。 当?350s时,t2?25?(300?25)?(1?e ?0 )。 ? 因而,动态误差t1?t2?300?285.15?14.85(C)。 26 已经明白某传感器属于一阶环节,现用于测量100Hz的正弦信号,如幅值误差限制在5以内,时间常数?应取多少?假设用该传感器测量50Hz的正弦信号,征询现在的幅值误差和相位误差各为多少? 解: 一阶传感器的幅频特性为: A? 1? ? 2 由于幅值误差限制在5以内,即 A?0.95 当f?100Hz时,有 ?max?0.00052s。 假设用此传感器测量f?50Hz的信号,其幅
16、值误差为: 1A?1 1? 1 1 ?2?50Hz?0.00052s? 2 ? 2 ?1?0.987?1.3% 相位误差为: ?arctg? ?9.28?篇三:传感器原理及工程应用(郁有文)课后答案 第一章 传感与检测技术的理论根底 1 什么是测量值的绝对误差、相对误 差、援用误差? 答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 援用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相关于仪表满量程的一种误差。援用误差是绝对误差(在仪表中指的是某一刻度点的示值
17、误差)与仪表的量程之比。 2 什么是测量误差?测量误差有几种 表示方法?它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,援用误差也是相对误差的一种表示方法。 在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。在计算相对误差时也必须明白绝对误差的大小才能计算。 采纳绝对误差难以评定测量精度的高低,而采纳相对误差比较客观地反映测量精度。 援用误差是仪表中应用的一种相对误差,仪表的精度是用援用误差表示的。 3 用测量范围为-50+150kPa的压力 传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝
18、对误差、实际相对误差、标称相对误差和援用误差。 解:绝对误差?14?214?02kPa 实际相对误差 标称相对误差 援用误差 ?142?140?100%?1.43%140142?140?100%?1.41%142?142?140?100%?1%150?(?50)4 什么是随机误差?随机误差产生的 缘故是什么?如何减小随机误差对测量结果的阻碍? 答:在同一测量条件下,屡次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。 随机误差是由特别多不便掌握或临时未能掌握的微小要素(测量装置方面的要素、环境方面的要素、人员方面的要素),如电磁场的微变,零件的摩擦、间隙,热崎岖,空气扰
19、动,气压及湿度的变化,测量人员感受器官的生理变化等,对测量值的综合阻碍所造成的。 关于测量列中的某一个测得值来说,随机误差的出现具有随机性,即误差的大小和符号是不能预知的,但当测量次数增大,随机误差又具有统计的规律性,测量次数越多,这种规律性表现得越明显。因而一般可以通过增加测量次数可能随机误差可能出现的大小,从而减少随机误差对测量结果的阻碍。 5 什么是系统误差?系统误差可分哪 几类?系统误差有哪些检验方法?如何减小和消除系统误差? 答:在同一测量条件下,屡次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差。 系统误差可分为恒值(定值)系统误差和变值系统误差。误差的绝对值和符
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100