ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:35.54KB ,
资源ID:7042951      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7042951.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(三角形内角和-(2).docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三角形内角和-(2).docx

1、三角形的内角和 教学设计教学目标: 1. 掌握三角形内角和定理及其推论; 2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类; 3通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。4 通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态 5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。 教学重点:三角形内角和定理及其推论。 教学难点:三角形内角和定理的证明 教学用具:直尺、微机 教学方法:互动式,谈话法 教学过程: 一、1、 创设情境,自然引入 把问题作为教学的出发点

2、,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。 问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢? 问题2 你能用几何推理来论证得到的关系吗? 对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题) 新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生

3、感觉本节课学习的内容自然合理。 2、 设问质疑,探究尝试 (1) 求证:三角形三个内角的和等于 让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。 问题1 观察:三个内角拼成了一个 什么角? 问题2 此实验给我们一个什么启示? (把三角形的三个内角之和转化为一个平角) 问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁? 其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么

4、要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。 (2) 通过类比“三角形按边分类”,三角形按角怎样分类呢? 学生回答后,电脑显示图表。 (3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢? 问题1 直角三角形中,直角与其它两个锐角有何关系? 问题2 三角形一个外角与它不相邻的两个内角有何关系? 问题3 三角形一个外角与其中的一个不相邻内角有何关系? 其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的

5、定义,然后让学生经过分析讨论,得出结论并书写证明过程。 这样安排的目的有三点:第一,理解定理之后的延伸推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。 3、三角形三个内角关系的定理及推论 引导学生分析并严格书写解题过程 二、探究新知1、三角形的内角、内角和(1)什么是三角形内角(课件)三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上1、2、3。(2)三角形内角和师:内角和指的是什么?生:三角形的三个角的度数的和,就是三角形的内角和。(多让几个学生说一说)2、猜一猜。师:这个三角形的内角和是多

6、少度?师:是不是所有的三角形的内角和都是180呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3操作验证:小组合作。选1个自己喜欢的三角形,选喜欢的方法进行验证。(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。) 4学生汇报。(1)教师:汇报的测量结果,有的是180,有的不是180,为什么会出现这种情况?师:有没有别的方法验证。(2)剪拼a、学生上台演示。B、请大家

7、四人小组合作,用他的方法验证其它三角形。C、展示学生作品。D、师展示。(3)折拼师:有没有别的验证方法?师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。) (4)数学文化师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180到初中我们还要更严密的方法证明三角形的内角和是180早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是1

8、80(课件)帕斯卡(BlaisePascal,16231662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。5、巩固知识。(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。(2)解决课前问题,为什么画不出1个含有2个直角的三角形?1个三角形中有没有2个钝角?(3)师:我们对三角形的认识已经非常清晰,出示2个三角形,生分别说出内角和。把两个小三角形拼在一起,问:大三角形的内角和是?度。教师:为什么不是360?三、解决相关问题师:接下来,利用三角形的内角和我们来

9、解决一些相关的问题吧!1、看图,求未知角的度数2、书上88页10题。教师:刚才,我们利用了三角形的什么?3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。(1)我三边相等。(2)我是等腰三角形,我的顶角是96。(3)我有一个锐角是40。4、判断。5、求4边形、5边形内角和。下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?如果要求10边形的内角和,你会求吗?你有什么发现?(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。) 四、总结。师:这节课你有什么收获?五、板书设计:三角形的内

10、角和是1801+2+3=180 度量 剪拼 折拼班级_姓名_基础达标一、填空题。1. 三角形按角分类分为( )三角形、( )三角形和( )三角形。2. 锐角三角形的三个角都是( )角;直角三角形中必定有一个是( )角;钝角三角形中也必定有一个角是( )角。3. 在三角形中,已知155,248,3( )。4. 等腰三角的顶角是60,它的一个底角是( ),它又叫( )三角形。如果底角是70,顶角是( );如果底角是45,它的顶角是( ),它又叫( )三角形。5. 任何一个三角形都具有( )特性,都有( )条高。二、判断题。(对的打“”,错的打“”)1. 等边三角形一定是锐角三角形。 ( )2. 等

11、腰三角形一定是锐角三角形。 ( )3. 钝角三角形只有一条高。 ( )4. 三角形的三个内角的和的大小与三角形的大小无关,都是180。 ( )5. 任何一个三角形至少有两个锐角。 ( )三、根据要求做题。1. 画出下面每个三角形指定底边上的高。2. 根据条件画三角形。两条边分别是2厘米和5厘米,它们的夹角是60。两条边都是3厘米,它们的夹角是90。四、1、2、3分别是三角形中的三个内角。1140,225,求3。265,373,求1。172,290,求3。拓展创新一、求出下面各三角形中未知角的度数。二、按要求完成下列各题。如下图三角形ABC的周长是86厘米,BC,BC16厘米,求AB的长是多少厘米。根据下图求出2和3各是多少度。(160,4125)算出下图中1、2、3的度数,并求这三个角的度数和。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服