ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:32.50KB ,
资源ID:7042610      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7042610.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(看完让你爱上数学.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

看完让你爱上数学.doc

1、看完让你爱上数学 死理性派的小编经常会被问到的一个问题:数学到底哪里有趣了,数学之美又在哪里?这篇文章精心选择了 10 个老少咸宜的算术问题,以定理、趣题甚至未解之谜等各种形式带领大家窥探数学世界的一角。不少问题背后都蕴含了深刻的数学知识,触及到数学的各个领域。希望从小数学就不及格的朋友们能够喜欢上数学这门充满乐趣的学科。 1.数字黑洞 6174 任意选一个四位数(数字不能全相同),把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。重复对新得到的数进行上述操作,7 步以内必然会得到 6174。 例如,选择四位数 6767: 7766 - 6677 =

2、1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174 7641 - 1467 = 6174 …… 6174 这个“黑洞”就叫做 Kaprekar 常数。对于三位数,也有一个数字黑洞——495。 2.3x + 1 问题 从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。你会发现,序列最终总会变成 4, 2, 1, 4, 2, 1, … 的循环。 例如,所选的数是 67,根据上面的规则可以依次得到: 67, 202, 1

3、01, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ... 数学家们试了很多数,没有一个能逃脱“421 陷阱”。但是,是否对于 所有 的数,序列最终总会变成 4, 2, 1 循环呢? 这个问题可以说是一个“坑”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从 3x + 1 问题的各种别名看出来: 3x + 1 问题

4、又叫 Collatz 猜想、 Syracuse 问题、 Kakutani 问题、 Hasse 算法、 Ulam 问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做 3x + 1 问题算了。 直到现在,数学家们仍然没有证明,这个规律对于所有的数都成立。 3.特殊两位数乘法的速算 如果两个两位数的十位相同,个位数相加为 10,那么你可以立即说出这两个数的乘积。如果这两个数分别写作 AB 和 AC,那么它们的乘积的前两位就是 A 和 A + 1 的乘积,后两位就是 B 和 C 的乘积。 比如,47 和 43 的十位数相同,个位数之和为 10,因而它们乘积的前两位就是 4×(4 +

5、 1)=20,后两位就是 7×3=21。也就是说,47×43=2021。 类似地,61×69=4209,86×84=7224,35×35=1225,等等。 这个速算方法背后的原因是,(10 x + y) (10 x + (10 - y)) = 100 x (x + 1) + y (10 - y) 对任意 x 和 y 都成立。 4.幻方中的幻“方” 一个“三阶幻方”是指把数字 1 到 9 填入 3×3 的方格,使得每一行、每一列和两条对角线的三个数之和正好都相同。下图就是一个三阶幻方,每条直线上的三个数之和都等于 15。 大家或许都听说过幻方这玩意儿,但不知道幻方中的一些美妙的性

6、质。例如,任意一个三阶幻方都满足,各行所组成的三位数的平方和,等于各行逆序所组成的三位数的平方和。对于上图中的三阶幻方,就有 816^2 + 357^2 + 492^2 = 618^2 + 753^2 + 294^2 利用线性代数,我们可以证明这个结论。 5.天然形成的幻方 从 1/19 到 18/19 这 18 个分数的小数循环节长度都是 18。把这 18 个循环节排成一个 18×18 的数字阵,恰好构成一个幻方——每一行、每一列和两条对角线上的数字之和都是 81 (注:严格意义上说它不算幻方,因为方阵中有相同数字)。 6.196 算法 一个数正读反读都一样,我们就把它叫

7、做“回文数”。随便选一个数,不断加上把它反过来写之后得到的数,直到得出一个回文数为止。例如,所选的数是 67,两步就可以得到一个回文数 484: 67 + 76 = 143 143 + 341 = 484 把 69 变成一个回文数则需要四步: 69 + 96 = 165 165 + 561 = 726 726 + 627 = 1353 1353 + 3531 = 4884 89 的“回文数之路”则特别长,要到第 24 步才会得到第一个回文数,8813200023188。 大家或许会想,不断地“一正一反相加”,最后总能得到一个回文数,这当然不足为奇了。事实情况也确实是这样——对

8、于 几乎 所有的数,按照规则不断加下去,迟早会出现回文数。不过,196 却是一个相当引人注目的例外。数学家们已经用计算机算到了 3 亿多位数,都没有产生过一次回文数。从 196 出发,究竟能否加出回文数来?196 究竟特殊在哪儿?这至今仍是个谜。 7.Farey 序列 选取一个正整数 n。把所有分母不超过 n 的 最简 分数找出来,从小到大排序。这个分数序列就叫做 Farey 序列。例如,下面展示的就是 n = 7 时的 Farey 序列。 定理:在 Farey 序列中,对于任意两个相邻分数,先算出前者的分母乘以后者的分子,再算出前者的分子乘以后者的分母,则这两个乘积一定正好相差1

9、 ! 这个定理有从数论到图论的各种证明。甚至有一种证明方法巧妙地借助 Pick 定理,把它转换为了一个不证自明的几何问题! 8.唯一的解 经典数字谜题:用 1 到 9 组成一个九位数,使得这个数的第一位能被 1 整除,前两位组成的两位数能被 2 整除,前三位组成的三位数能被 3 整除,以此类推,一直到整个九位数能被 9 整除。 没错,真的有这样猛的数:381654729。其中 3 能被 1 整除,38 能被 2 整除,381 能被 3 整除,一直到整个数能被 9 整除。这个数既可以用整除的性质一步步推出来,也能利用计算机编程找到。 另一个有趣的事实是,在所有由 1 到 9 所组成的

10、 362880 个不同的九位数中,381654729 是唯一一个满足要求的数! 9.数在变,数字不变 123456789 的两倍是 246913578,正好又是一个由 1 到 9 组成的数字。 246913578 的两倍是 493827156,正好又是一个由 1 到 9 组成的数字。 把 493827156 再翻一倍,987654312,依旧恰好由数字 1 到 9 组成的。 把 987654312 再翻一倍的话,将会得到一个 10 位数 1975308624,它里面仍然没有重复数字,恰好由 0 到 9 这 10 个数字组成。 再把 1975308624 翻一倍,这个数将变成 39

11、50617248,依旧是由 0 到 9 组成的。 不过,这个规律却并不会一直持续下去。继续把 3950617248 翻一倍将会得到 7901234496,第一次出现了例外。 10.三个神奇的分数 1/49 化成小数后等于 0.0204081632 …,把小数点后的数字两位两位断开,前五个数依次是 2、4、8、16、32,每个数正好都是前一个数的两倍。 100/9899 等于 0.01010203050813213455 … ,两位两位断开后,每一个数正好都是前两个数之和(也即 Fibonacci 数列)。 而 100/9801 则等于 0.0102030405060708091011121314151617181920212223 … 。 利用组合数学中的“生成函数”可以完美地解释这些现象的产生原因。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服