ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:178.50KB ,
资源ID:7034272      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7034272.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文((函数专题(四)).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

(函数专题(四)).doc

1、 函数专题复习(四) 第二十七课时 函数的应用举例(1) 目的:熟悉借助“几何图形”和“计算利润”两种常见类型的应用问题。 过程: 一、 应用问题的解答绝大部分是通过建立模型(常常是函数模型)并借助图 象和性质来进行研究的,研究结果再应用于实践。 1. 数学模型来源于实践,是实际问题的抽象和概括,因此首先必须对实际问题要有深刻的理解。 2. 其次,应不断培养自己的抽象概括能力和坚实的数学基础。 B 3. 最后,当然需要有较强的运算能力。 二、 例一、有一块半圆形钢板,计划剪裁成等腰梯形ABCD的形 状,下底AB是⊙O的直径,上底CD的端点在圆周上。写出这个

2、梯形周长y 与腰长x间的函数式,并写出它的定义域。 A 2R B D C E x x 分析:关键是用半径R与腰长x表示上底 由对称性:CD=AB-2AE 因此只要求AE 解:设腰长AD=BC=x 作DE^AB 垂足为E 连结BD 则ÐADB=90° 由此:Rt△ADE∽Rt△ABD ∴

3、 ∴ ∴周长 ∵ABCD是圆内接梯形 ∴ 例二 如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x 1. 写出AP+2PM关于x的函数关系式 2.求此函数的最值 P M A D O B 解:1.过P作PD^AB于D,连PB 设AD=a则

4、 ∴ 2. D E 当时 当时 例三 距离船只A的正北 方向100海里处有一船只B,以每小时20海里的速度,沿 C 北偏西60°角的方向行驶,A船只以每小时15海里的速度 A 向正北方向行驶,两船同时出发,问几小时后两船相 距最近? 解:设t小时后A行驶到点C,B行驶到点

5、D,则BD=20 BC=100-15t 过D作DE^BC于E DE=BDsin60°=10t BE=BDcos60°=10t ∴EC=BC+BE=100-5t CD== ∴t=时CD最小,最小值为200,即两船行驶小时相距最近。 例四、某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚得利润最大,并求出最大利润。 解:设商品售价定为x元时

6、利润为y元,则 y=(x-8)[60-(x-10)10]=-10[(x-12)2-16]=-10(x-12)2+160 (x>10) 当且仅当x=12时,y有最大值160元,即售价定为12元时可获最大利润160元。 第二十八课时 函数的应用举例(2) 目的: 要求熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法。 过程: 一、 新授: 例一、 某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可选用二次函数或(a,b,c为常数),

7、已知四月份该产品的产量为1.37万件,请问:用以上那个函数作模拟函数较好?说明理由。 解:设二次函数为: 由已知得: ∴ 当 x = 4时, 又对于函数 由已知得: ∴ 当 x = 4时, 由四月份的实际产量为1.37万件, ∴选用函数 作模拟函数较好。 例二、 已知某商品的价格每上涨x%,销售的数量就减少mx%,其中m为 正常数。 1. 当时,该商品的价格上涨多少

8、就能使销售的总金额最大? 2.如果适当的涨价,能使销售总金额增加,求m的取值范围。 解:1.设商品现在定价a元,卖出的数量为b个。 由题设:当价格上涨x%时,销售总额为 即 取得: 当 x = 50时, 即该商品的价格上涨50%时,销售总金额最大。 2.∵二次函数 在 上递增,在上递减 ∴适当地涨价,即 x > 0 , 即 就是 0

9、 < m <1 , 能使销售总金额增加。 例三、 按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和 为y,存期为x,写出本利和y 随存期x 变化的函数关系式。如果 存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少? “复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息。 分析:1期后  2期后   ……   ∴ x 期后,本利和为: 将 a = 1000元,r = 2.25%,x = 5 代入上式: 由计算器算

10、得:y = 1117.68(元) 第二十九课时 函数的应用举例(3) 目的: 结合物理等学科,利用构建数学模型,解决问题。 过程: 例一、 设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ,其中 c,k为常量,已知某地某天在海平面的大气压为Pa,1000 m高空的大气压为Pa,求:600 m高空的大气压强。(结果保留3个有效数字) 解:将 x = 0 , y =;x = 1000 , y = 代入 得: 将 (1) 代入 (2) 得: 由计算器得: ∴ 将 x = 6

11、00 代入, 得: 由计算器得: 例二、一根均匀的轻质弹簧,已知在 600 N的拉力范围内,其长度与所受拉力 成一次函数关系,现测得当它在 100 N的拉力作用下,长度为 0.55 m , 在 300 N拉力作用下长度为 0.65,那么弹簧在不受拉力作用时,其 自然长度是多少? 解:设拉力是 x N (0≤x≤600) 时,弹簧的长度为 y m 设:y = k x + b 由题设: ∴所求函数关系是:y = 0.0005 x + 0.

12、50 ∴当 x = 0时,y = 0.50 , 即不受拉力作用时,弹簧自然长度为 0.50 m。 例三、一物体加热到 T0°C 时,移入室内,室温保持常温 a°C,这物体逐渐 冷却,经过 t 分后,物体的温度是 T°C,那么 T 与 t 之间的关系有 下列形式(这里 e =2.71828,k为常数),现有加热 到 100°C的物体,移入常温为 20°C的室内,经过 20分后,物体的 温度是 80°C,求: 1.经过 20分后,物体的温度是多少度?(精确到 1°C ) 2.经过多少分(精确到 1分),物体的温度是 30°C?

13、 解:将 T0 = 100 , T = 80 , a = 20 , t = 10代入关系式 得: 化简得:   两边取自然对数,并计算得: ∴ k = 0.0288 从而可得: (*) 1. 把 t = 20代入(*) 由计算器得:T = 64.97 °C 即经过 20分后,物体的温度约为65度。 2. 把 T = 30代入(*) 则 两边取自然对数,并计算得: 即物体冷却到30°C约经过72分钟。 第7页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服