ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:223KB ,
资源ID:7028638      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7028638.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第8课时双曲线.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第8课时双曲线.doc

1、第8课时双 曲 线考情分析考点新知建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题 了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质. 掌握双曲线的简单应用.1. 双曲线的定义(1) 平面内动点的轨迹是双曲线必须满足两个条件: 到两个定点F1、F2的距离的_等于常数2a. 2a _F1F2.(2) 上述双曲线的焦点是_,焦距是_2. 双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围_对称性对称轴:_ 对称中心:_对称轴:_对称中心:_顶点顶点坐标:_顶点坐标:_渐近线_

2、离心率e,e_实虚轴线段A1A2叫做双曲线的实轴,它的长A1A22a;线段B1B2叫做双曲线的虚轴,它的长B1B22b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长.a,b,c的关系3. 等轴双曲线_等长的双曲线叫做等轴双曲线,其标准方程为x2y2(0),离心率e_,渐近线方程为y_1. 双曲线1的焦距为_2. 双曲线1的渐近线方程为_3. 已知双曲线C:1(a0,b0)的实轴长为2,离心率为2,则双曲线C的焦点坐标是_4. (选修11P39习题2(2)改编)双曲线的焦点在 x轴上,虚轴长为12,离心率为,则双曲线的标准方程为_. 5. 已知P是双曲线1(a0)右支上的一点,双曲线的一条渐近

3、线方程为3xy0.设F1、F2分别为双曲线的左、右焦点,若|PF2|3,则|PF1|_题型1求双曲线方程 例1已知双曲线的离心率等于2,且经过点M(2,3),求双曲线的标准方程已知双曲线1(a0,b0)的两条渐近线方程为yx,若顶点到渐近线的距离为1,求双曲线方程题型2求双曲线的基本量例2已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.(1) 求双曲线的标准方程;(2) 写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程题型3与椭圆、抛物线有关的基本量例3已知双曲线过点(3,2),且与椭圆4x29y236有相同的焦点(1) 求双曲线的标准方程;(2) 求以双曲线的右

4、准线为准线的抛物线的标准方程(提示:本题模拟高考评分标准,满分14分)双曲线C与椭圆1有相同的焦点,直线yx为C的一条渐近线求双曲线C的方程1. (2011安徽)双曲线2x2y28的实轴长是_2. (2011江西)若双曲线1的离心率e2,则m_3. (2011山东)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为_4. (2011天津)已知双曲线1(a0,b0)的一条渐近线方程是yx,它的一个焦点在抛物线y224x的准线上,则双曲线的方程为_5. 根据下列条件,求双曲线方程(1) 与双曲线1有共同的渐近线,且过点(3,2);(2) 与双曲线1有公共焦点,且过点(3,2)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服