ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:23KB ,
资源ID:7028575      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7028575.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(奥数30_抽屉原理2[1]1.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

奥数30_抽屉原理2[1]1.doc

1、第三十周 抽屉原理(二) 专题简析: 在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式: 元素总数=商×抽屉数+余数 如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。 例题1: 幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120×3+4,4<120。根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1

2、个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。 练习1: 1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。这是为什么? 3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球? 例题2: 布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样? 把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽

3、屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2×4+1=9(个)球。列算式为 (3—1)×4+1=9(个) 练习2: 1、布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球? 2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块? 3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同?

4、 例题3: 某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同? 参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。把4+6+4+1=15(种)类型看做15个抽屉,把46个学生放入这些抽屉,因为46=3×15+1,所以班级中至少有4名学生参加的项目完全相同。 练习3: 1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。其中至少有

5、几位同学订的报刊相同? 2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同? 3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个,问:在31个 搬运者中至少有几人搬运的球完全相同? 例题4: 从1至30中,3的倍数有30÷3=10个,不是3的倍数的数有30—10=20个,至少要取出20+1=21个不同的数才能保证其中一定有一个数是3的倍数。 练习4: 1、在1,2,3,……49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除? 2、从1至120中

6、至少要取出几个不同的数才能保证其中一定有一个数是4的倍数? 3、从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数? 例题5: 将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明:找少有七名同学得到的卡片的张数相同。 这题需要灵活运用抽屉原理。将分得1,2,3,……,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+……+10+11=66(张)卡片。而400÷66=6……4(张),即每个周体都有6个元素,还余下4张卡片没分掉。而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到

7、的卡片的张数相同。 练习5: 1、把280个桃分给若干只猴子,每只猴子不超过10个。证明:无论怎样分,至少有6只猴子得到的桃一样多。 2、把61颗棋子放在若干个格子里,每个格子最多可以放5颗棋子。证明:至少有5个格子中的棋子数目相同。 3、汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。证明:一定存在连续的两小时,在这两小时内汽车至少行了80千米。 答案: 练1 1、 把40名小朋友看做40个抽屉,将125件玩具放入这些抽屉,因为125=3×40+5,根据抽屉原理,可知至少有一个抽屉有4件或4件以上的玩具,所以肯定有人会得到4件或4件以上的玩具

8、 2、 把三个笔盒看做3个抽屉,因为16=5×3+1,根据抽屉原理可以至少有一个笔盒里的笔有6枝或6枝以上。 3、 把盒子数看成抽屉,要使其中一个抽屉里至少有7个球,那么球的个数至少应比抽屉个数的(7-1)倍多1,而25=4×(7-1)+1,所以最多方子4个盒子里,才能保证至少有一个盒子里有7个球。 练2 1、 最少应取出(3-1)×5+1=11个球 2、 至少取出(4-1)×3+1=10块木块。 3、 如果没有两张王牌,至少要取(4-1)×13+1=40张,再加上两张王牌,至少要摸出40+2=42张,才能保证其中必有4张牌点数相同。 练3 1、 小学六年中最多有2个闰年,共

9、366×2+365×4=2191天,因为13170=6×2192+18,所以其中一定有7人是同年同月同日生的。 2、 参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个组的有6种类型,只参加三个字的有4种类型,参加四个组的有1种类型。把4+6+4+1=15种类型看作15个抽屉,把46个学生放入这些抽屉,因为46=15×3+1,所以班级中至少有4名学生参加的项目完全相同。 3、 全班订阅报刊的类型共有3+3+1=7种,因为37=5×7+2,所以其中至少有6位学生订的报刊相同。 练4 1、 在1~50中,5的倍数有50÷5=10个,不是5的倍数的就有50-10=40个

10、至少要取出40+1=41个不同的数才能保证其中有个数能贝5整除。 2、 在1~120中,4的倍数有120÷4=30个,不是4的倍数有120-30=90个,正是要取出90+1=91个不同的数才能保证其中一定有一个数是4的倍数。 3、 差是5的两数有下列5组:1、6,11、16,21、26,31、36;2、7,12、17,22、27;3、8,13、18,23、28、33;4、9,14、19,24、29,34;5、10,15、20,25、30、35。要使取出的数中没有两个数的差是5的倍数,最多只能从每组中各取1个数,即最多可以取5个数。 练5 1、 把11秒钟看做11个抽屉,把100米看作

11、100个元素,因为100=9×11+1,所以必有1个抽屉里超过9米,即必有某一秒钟,他跑的距离超过9米。 2、 如图答30-1,把边长为2的等边三角形分成四个边长为1的小等边三角形。把它看作4个抽屉,5个点看作5个元素,则一定有一个小三角形内有2个点,这2个点之间的距离不超过1。 3、先把长方形的每边剪去宽1厘米的长条,余下一个50×40的长方形,它的面积为2000平方厘米,再把每个圆的半径放大1厘米成为3厘米的圆,若剪去后的长方形至少有一个点未被70个镶边后的圆盖住的话,那么原来的长方形中就能放进一个以这点为圆心的圆。因为P×32×70的值就小于630×3.15=1984.5<2000,所以在原来的长方形中一定可以放进一个半径为1厘米的圆。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服