ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:39KB ,
资源ID:7028221      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7028221.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(信用评分模型中的拒绝推断-职称论文写作.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

信用评分模型中的拒绝推断-职称论文写作.doc

1、 信用评分模型中的拒绝推断 [摘 要] 申请评分模型是为了评估申请者是否有能力如期偿还贷款的模型,是信用评分模型的一大分支,应用于信用卡征信审核阶段。本文从产生原因入手,详细分析了申请评分中的一类特殊问题——拒绝推断,并采用实证分析的方式说明了扩张法是解决拒绝推断问题较好的方法。   [关键词] 信用卡 申请评分 拒绝推断 扩张法 Logistic回归      一、拒绝推断问题的研究背景   申请信用评分是为了评估申请者的信用状况,是否有能力如期偿还贷款的模型。它应用于信用卡征信审核阶段,通过申请人填写的个人信息及征信局信息,可有效、快速地辨别和划分客户质量,根据评估

2、结果决定对于哪些人授信,授信多少。相对于行为评分的事中信用风险控制和催收评分的事后信用风险控制,申请评分为银行信用卡业务提供事前信用风险控制。所以模型的目标是预测申请者违约的概率,通过与阈值的比较,确定是否应该批准其申请。   但是实际上在建模过程中,我们使用的仅仅是部分申请者的记录——已经被批准的申请者作为样本开发模型,因为我们能够观察到这部分客户的后续行为。但是我们无法获取那些被拒绝的申请者的未来行为,也就无法准确判断他们究竟是好客户还是坏客户。对比而言,模型的应用对象将是包括拒绝和批准的全部客户。这就导致了使用部分数据,但是为估计总体而建立的信用评分模型存在参数估计的偏误,相关的研究

3、也表明了这一点。   拒绝推断(Reject Inference),即对于建模总体中被拒绝的客户样本如何处理,是建立申请评分模型时特有的问题。如果我们能够顺利运用某些方法成功地推断出被拒绝的客户的信用表现(即是好客户还是坏客户),那么我们就得到一个较完整的建模总体和建模样本。   二、拒绝推断的方法   拒绝推断并不能解决所有样本偏差的问题。在经常改变授信政策的情况下,总会发生样本偏差的问题,只有通过积累数据来调整模型。在一致的授信政策下,如果模型总是被应用在固定的政策拒绝之后,开发模型的样本与使用模型的样本是一致的,这时无需进行拒绝推断;或者在高批核率或低坏账率时,被拒客户可以认

4、定为坏客户,并且由于其样本量小,可忽略其对样本偏差的影响,无需考虑拒绝推断。在征信局数据完备的情况下,可以利用征信局数据或者通过其他途径补充被拒绝客户表现数据,如购买其他银行数据,也可以不考虑拒绝推断。   如果以上情形均不满足,模型开发中必须要考虑拒绝推断问题。   1.接受部分坏客户   解决样本选择偏差的最直接有效的方法就是随机抽取未被授信的客户,对其进行授信,观察未来表现。对于这部分客户加以一定的权重与那些原本被授信的客户合起来作为模型开发的样本。   但是这种方法在现实中很难被银行的风险管理部门所接受,因为未被授信的客户一般被认为存在拖欠行为的可能性较大,对这部分客户

5、进行授信,风险也往往较高,易带来损失。   2.扩张法   扩张法(Augmentation)又称加权法(Re-Weighting),假设被拒绝的申请者行为模式与被授信的申请者行为模式相似,其基本思想是加权被授信的申请者,使得被授信的申请者能够代表被拒绝的申请者的行为。   该方法分为两个阶段。第一阶段,建立一个拒绝/批准模型,然后假设相近拒绝/批准概率的客户具有近似的风险特征, 因此考虑将拒绝/批准概率分成若干段,每段的好坏账户能代表该段内的被拒客户的特征,因此利用这些好坏账户可以推测被拒帐户中的好坏。第二阶段,建立有权重修正因子的违约预测模型。   具体操作如下:   

6、对所有样本账户先构建一个粗略的拒绝/批准模型,其中批准账户包括“好账户”、“坏账户”,据此得到对所有账户的预测的拒绝概率。该拒绝/接受模型仅用于加权调整,采用的变量可以放宽。   将预测的拒绝概率分成0—0.1, 0.1—0.2,……,0.9—1.0共10段,计算每段的好坏账户、拒绝账户的个数,计算每段的权重修正因子:(好账户数+坏账户数+被拒账户数)/(好账户数+坏账户数)。   将每段的帐户的原有权重和该段的权重修正因子相乘,得到新的权重变量,这个新的权重变量用于模型拟合与调整。   在这里我们采用国内某商业银行信用卡申请数据对于扩张法进行实证检验。模型的目标为:预测新申请账户

7、在未来15个月内变成坏帐的可能性。 目标变量定义为:好帐户——表现期最坏状态<=M1;坏帐户——表现期最坏状态为M3+。   删除某些缺失严重的记录,以及将某些缺失变量用合适的值进行弥补后,共计150345条申请记录。这其中包括109005条有15个月表现期的批准账户信息及41340条拒绝账户信息。   在模型构建的过程中,为了检验模型在样本外的效果,需要将模型开发数据集按照6:4随机分成两部分:开发集与测试集。   下面进行模型的初步拟合——拒绝/批准模型。   拒绝/批准模型的目标变量定义为是否批准申请的二元变量,对开发集中的所有记录采用逐步Logistic 回归方法,根据

8、回归的结果,对所有开发集帐户进行评估,按照评分值大小排序分成10组,组内每个帐户的权重设为该组所有帐户数与组内所有被授信申请者数的比值,获得加权权重表如下:   利用权重修正因子,对所有被授信申请者采用有加权的逐步Logistic 回归方法,经过显著性检验、方向性检验、共线性检验 、稳定性检验等步骤,获得最终的评分模型。   最后对于使用与未使用拒绝推断的评分模型效果进行比较,可用下面的拒绝推断图来进行考察。针对授信账户与(实线)拒绝账户(虚线)分别作图,其中横座标为拒绝概率分组,纵座标有加权调整前的评分PGB和加权调整后的评分PGB(REWGT)。从图形上可以看出加权与否,对评分的影

9、响。随着被拒绝概率的增加,采用拒绝推断的模型违约概率增长速度高于原始模型,尤其是对于拒绝账户这一效果更为明显。这说明了对于可能被拒绝的这部分客户,拒绝推断能够得到一个较高的违约概率,模型的预测能力明显高于不采用拒绝推断。   三、结论   随着我国信用卡业的高速发展,如何有效地对申请客户进行信用评分,防范信用不良客户申办信用卡,在发卡环节增强银行预防和抵抗风险的能力,提高发卡质量,是所有银行迫切需要解决的问题。作为信用评分的一类,申请评分具有其特殊性。与成熟市场相比,目前国内的征信局数据严重缺乏,利用征信局数据进行拒绝推断的核实方法受到限制。采用接受部分坏客户的方式会给银行带来潜在的损

10、失,成本高,在操作上存在难度。而扩张法的应用基于统计假设,实践也证明了其修正样本选择偏差的效果,可以有效地提高申请评分模型的预测能力。      参考文献:   [1]Banasik, J. B., Crook, J. N., Thomas, L. C., 2001. Sample selection bias in credit scoring models, Working Paper 01/5, Credit Research Centre, University of Edinburgh   [2]Crook, J N and Banasik, J L, (forthcoming). Does reject inference really improve the performance of application scoring models, Journal of Banking and Finance

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服