ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:532.50KB ,
资源ID:7024533      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7024533.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第3讲---空间几何体的表面积和体积培优班学案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第3讲---空间几何体的表面积和体积培优班学案.doc

1、第3讲 空间几何体的表面积和体积一【要点精讲】1多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体 积(V)棱柱棱柱直截面周长lS侧+2S底S底h=S直截面h直棱柱chS底h棱锥棱锥各侧面积之和S侧+S底S底h正棱锥ch棱台棱台各侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台 (c+c)h表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。2旋转体的面积和体积公式名称圆柱圆锥圆台球S侧2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中

2、l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径二【热身训练】1若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为。.2已知是球表面上的点,则球的表面积等于 。3在长方体中,则四棱锥的体积为 cm3.4已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于.体积为。5圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是_cm.6已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积

3、为。三【典例解析】例1如图1所示,在平行六面体ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在BAD的平分线上;(2)求这个平行六面体的体积图1 图2例2如图,已知斜三棱柱ABC-A1B1C1的底面是边长为4 cm的正三角形,侧棱长为3 cm,侧棱AA1与底面相邻的两边都成60角.(1)求证:四边形CC1B1B是矩形;(2)求这个棱柱的侧面积.例3三棱柱ABCA1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1V2= _ _。变式训练:如上图,

4、三棱柱ABCA1B1C1中,若E、F分别为AB、AC 上的点,且EFBC,问:当点E在什么位置时,平面EB1C1F将三棱柱分为体积相等的两部分?例4已知过球面上三点的截面和球心的距离为球半径的一半,且,求球的表面积变式训练:(1)(直三棱柱的各顶点都在同一球面上,,,则此球的表面积等于 。 (2)圆锥的底面半径为2,轴截面的顶角是1200,过两条母线的截面中,面积的最大值是_。例5 在如图所示的几何体中,四边形是正方形,平面,、分别为、的中点,且.(I)求证:平面平面;(II)求三棱锥与四棱锥的体积 之比.四【反馈提高】1一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是。2如图,

5、正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为_。3一个直角三角形的两条直角边的长分别为3cm和4cm, 将这个直角三角形以斜边为轴旋转一周,所得旋转体的体积是_ 4圆锥的底面半径为5cm, 高为12cm, 当它的内接圆柱的底面半径为何值时, 圆锥的内接圆柱的全面积有最大值?最大值是多少?5A、B、C是球面上三点,已知弦AB=18cm,BC=24cm,AC=30cm,平面ABC与球心O的距离恰好为球半径的一半,求球的面积6如图:在四棱锥中,底面是菱形,平面,点、分别为、的中点,且_N_M_A_C_B_P(I)证明:平面;(II)求三棱锥的体积;(III)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,说明理由7如图所示,在棱长为2的正方体中,、分别为、的中点 (1)求证:/平面;(2)求证:;(3)求三棱锥的体积8如图,棱锥P-ABCD的底面ABCD是矩形,PA平面ABCD,PA=AD=2,BD=。(1)求棱锥P-ABCD的体积; (2)求点C到平面PBD的距离 第 - 5 - 页 共 5 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服