ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:590.05KB ,
资源ID:7022385      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7022385.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学人教A版必修5导学案:2.4-第2课时-等比数列(二).docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学人教A版必修5导学案:2.4-第2课时-等比数列(二).docx

1、 【自学目标】1.灵活应用等比数列的定义及通项公式.2.熟悉等比数列的有关性质.3.系统了解等比数列的判断方法1等比数列的第二通项公式等比数列的通项公式为:an (q0),推广形式为:an (n,mN*,q0)2等比数列的性质(1)如果mnkl,则有 ;(2)如果mn2k时,aman ;(3)若m,n,p成等差数列,am,an,ap成等比数列;(4)在等比数列an中,每隔k项(kN*)取出一项,按原来的顺序排列,所得的新数列仍为等比数列;(5)如果an,bn均为等比数列,且公比分别为q1,q2,那么数列,anbn,|an|仍是等比数列,且公比分别为,q1q2,|q1|;(6)等比数列的项的对称

2、性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a1an .情境导学在等差数列an中,通项公式可推广为aman(mn)d,并且若mnpq,则anamapaq(n,m,p,qN*),特别地,若mn2p,则anam2ap.那么,在等比数列中又有哪些类似的性质?这就是本节研究的主要内容探究点一等比数列的判断方法思考1判断或证明一个数列是等比数列的常用方法有哪些?思考2如何判断或证明一个数列不是等比数列例1已知an、bn是项数相同的等比数列,求证:anbn,can(c为非零常数)是等比数列跟踪训练1若数列an为等比数列,公比为q,且an0,bnlg an,试问数列bn是什么数列

3、?并证明你的结论探究点二等比数列的性质思考1类比等差数列通项公式的推广,你能得出等比数列通项公式推广的结论吗?思考2在等比数列an中,aa1a9是否成立?aa3a7是否成立?aan2an2(n2)是否成立?思考3由思考2你能得到等比数列更一般的结论吗?该结论如何证明?思考4在等比数列an中,若mn2k,如何证明amana(m,n,kN*)?思考5公比q0且q1时,等比数列呈现怎样的特点?例2已知an为等比数列(1)若an0,a2a42a3a5a4a625,求a3a5;(2)若an0,a5a69,求log3a1log3a2log3a10的值跟踪训练2在各项均为正数的等比数列an中,若a3a54,

4、则a1a2a3a4a5a6a7_.例3有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数跟踪训练3有四个数,前三个数成等比数列,后三个数成等差数列,首末两项和为21,中间两项和为18,求这四个数1在等比数列an中,a28,a564,则公比q为()A2 B3 C4 D82在等比数列an中,an0,且a1a1027,log3a2log3a9等于()A9 B6 C3 D23在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为_4已知an2n3n,判断数列an是否是等比数列?呈重点、现规律1等比数列的判断或证

5、明(1)利用定义:q(与n无关的常数)(2)利用等比中项:aanan2(nN*)2如果证明数列不是等比数列,可以通过找一组三个连续项不成等比数列来证明3巧用等比数列的性质,减少计算量,这一点在解题中也非常重要一、基础过关1在等比数列an中,a84,则a2a14等于()A4 B8 C16 D322已知各项均为正数的等比数列an中,lg(a3a8a13)6,则a1a15的值为()A100 B100C10 000 D10 0003在正项等比数列an中,an11的等比数列,若a4,a5是方程4x28x30的两根,则a6a7_.6已知等差数列an的公差为2,若a1,a3,a4成等比数列,则a2_.7已知

6、数列an成等比数列(1)若a24,a5,求数列an的通项公式;(2)若a3a4a58,求a2a3a4a5a6的值二、能力提升8已知各项均为正数的等比数列an中,a1a2a35,a7a8a910,则a4a5a6等于()A5 B7C6 D49已知等比数列an中,各项都是正数,且a1,a3,2a2成等差数列,则等于()A1 B1C32 D3210已知等比数列an中,有a3a114a7,数列bn是等差数列,且b7a7,则b5b9_.11等差数列an的前n项和为Sn,已知S3a,且S1,S2,S4成等比数列,求an的通项公式12已知an是首项为19,公差为2的等差数列,Sn为an的前n项和(1)求通项公式an及Sn;(2)设bnan是首项为1,公比为3的等比数列,求数列bn的通项公式 三、探究与拓展13互不相等的三个数之积为8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服