ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:92.50KB ,
资源ID:7018083      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7018083.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(计量经济学经典eviews离散和受限因变量模型.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

计量经济学经典eviews离散和受限因变量模型.doc

1、离散和受限因变量模型 前面所描述的回归方法要求能在连续和无限制的规模上观察到因变量。然而,也经常出现违背上述条件的情形,即产生非连续或受限因变量。我们将会识别三种类型的变量: 1.定性(在离散或排序的规模上); 2.审查或截断; 3.整数估值(计数数据)。 在这章里我们讨论这几种定性和受限因变量模型的估计方法。EViews提供了二元或排序(普罗比特probit、逻辑logit、威布尔gompit),审查或截断(托比特tobit等),和计数数据模型的估计程序。 §17.1 二元因变量模型 二元因变量模型(Binary Dependent Variable Models)估计

2、方法主要发展与20世纪80年代初期。普遍应用于经济布局、企业定点、交通问题、就业问题、购买决策领域的研究。例如,公共交通工具和私人交通工具的选择问题。选择利用公共交通工具还是私人交通工具,取决于两类因素:一类是诸如速度、耗费时间、成本等两种交通工具所具有的属性;一类是决策个体所具有的属性,诸如职业、年龄、收入水平、健康状况等。从大量的统计中,可以发现选择结果与影响因素之间具有一定的因果关系。研究这一关系对制定交通工具发展规划无疑是十分重要的。 在本节介绍的模型中,因变量只具有两个值:1或者0。可能是代表某一事件出现的虚拟变量,或者是两种选择中的一种。例如,可能是每个人(被雇佣或不被雇佣)雇用

3、状况的模型,每一人在年龄、教育程度、种族、婚姻状况和其它可观测的特征方面存在差异,我们将其设为。目标是将个体特征和被雇用的概率之间的关系量化。 假定一个二元因变量,具有0和1两个值。对简单的线性回归是不合适的。而且从简单的线性回归中得到的的拟合值也不局限于0和1之间。替代地,我们采用一种设定用于处理二元因变量的特殊需要。假定我们用以下模型刻画观察值为1的概率为: Pr 这里是一个连续、严格单调递增的函数,它采用实际值并返回一个介于0和1之间的数。函数的选择决定了二元模型的类型。可以得到 Pr 给出了这样的设定以后,我们能

4、用极大似然估计方法估计模型的参数。极大似然函数为 极大似然函数的一阶条件是非线性的,所以得到参数估计需要一种迭代的解决方法。缺省地,EViews使用二阶导数用于参数估计的协方差矩阵的迭代和计算。 有两种对这种设定的重要的可选择的解释。首先,二元变量经常作为一种潜在的变量规定被生成。假定有一个未被观察到的潜在变量,它与x是线性相关的: 这里是随机扰动。然后被观察的因变量由是否超过临界值来决定 为了估计一个二元因变量模型,从主菜单中选择Object/New Object/Equation选项。

5、从Equation Specification对话框中,选择Binary estimation method。EViews既允许你计算拟合概率,,也可以计算指标的拟合值或预测值。 §17.2 排序因变量模型 在实际经济生活中,经常会遇到多元离散选择问题。例如,一类问题是将选择对象按照某个准则排队,由决策者从中选择,称为排序因变量模型(Ordered Dependent Variable Models)。在排序因变量模型中,被观察的指出了代表排序或排列的种类的结果。例如,我们可以观察选择处于四种教育结果之一的个体:低于高中、高中、大学、高级学位。或者我们也可以观察被雇用、半退休、全退休的个体

6、或者是选举问题,选举哪一个候选人。 如同在二元因变量模型中,我们可以通过考虑线性地依赖于解释变量的潜在变量模仿被观察的反应。 这里是一个独立的,分布可识别的随机变量。被观察的由根据以下规则确定: 是临界值。M是分类的个数。为了估计这个模型,从Equation Specification对话框,选择估计方法Ordered。 §17.3 检查回归模型 受限被解释变量(Limited dependent variable)指被解释变量的观测值是连续的,但是受到某种限制,得到的观测值并不反映被解释变量的实际状态

7、例如在一些环境中,只能部分地观察到因变量。在调查数据中,在特定水平之上的收入数据经常被编成密码以保护其机密性。这类问题经常出现在“检查”、“调查”活动中,因此也称为“检查(Censored Regression Models)。 例如,以居民对某一种商品的需求量为解释变量,建立需求函数模型。需求量的观测值是无法得到的,一般用实际购买量作为需求量的观测值。如果这种商品是限量购买的,正象我国过去长期所实行的那样,比如每户最多只能购买100,那么得到的观测值将处于0与100之间,而且会有相当比例的观测值为100。对于购买量小于100的个体,有理由认为这个购买量代表了他的需求;但是对于购买量等于1

8、00的个体,他的需求量很可能是大于100,所以这个购买量并不代表了他的需求量。也就是说,凡是实际需求量大于100的,都用100作为样本观测值,等于是将大于100的观测值作了归并。这类问题在微观经济活动调查中普遍存在。从这样的样本数据出发,如果采用经典的方法估计模型,显然是不合适的。 EViews提供了工具用于完成这些模型的最大似然估计,并将这些结果用于进一步分析。考虑下面的潜在变量回归模型 , 这里是一个比例参数。注意同二元因变量模型相比,比例参数被识别出来,并将同一起被估计。在规范的检查回归模型中,被称作tobit,被观察的数据由下式给出:

9、 换句话说,的所有负值被定义为0值。我们称这些数据在0处进行了左归并(left censored)。更一般地,Eviews允许在任意有限点上的左边和右边截取(归并),所以 这里,是代表归并点的固定数值。为估计此模型,从Equation Specification对话框,选择Censored估计方法。 §17.4 截断回归模型 截断回归模型(Truncated Regression Models)也是受限因变量模型的一种。截断问题,即“掐头”或“去尾”。即不能从全部个体,而只能从一部分个体中随机抽取因变量的样本观测值,而这部分个体的观测

10、值都大于或者小于某个确定值。例如,用居民收入为因变量建立居民收入模型。从理论上讲,居民收入样本数据应该从0到无穷大,但是由于客观条件所限,只能在收入处于某一数值以上或者某一数值以下的个体中取得样本观测值。当因变量小于一个临界值或大于另一个临界值,观察值都无法观察到。 一般的两个有限点的截断回归模型可以表示如下: 。 如果没有较低的截断点,那么我们将设。如果没有较高的截断点,那么我们将设。为估计此模型,从Equation Specification对话框,选择Censored估计方法。再选择Truncated sample选项估计截断模型。 §17.5 计数模型 当取代表事件发生次数的整数值时,使用计数模型(Count Models)。例如,一个公司提出申请的专利的数目,和在一个固定的时间间隔内经历的失业人数段的数目。Eviews提供了对于计数数据的几个模型估计的支持。除了标准泊松和负的二项式的极大似然(ML)设定,Eviews为计数数据提供了大量的准极大似然(QML)的估计量。 为估计此模型,从Equation Specification对话框,选择Count估计方法,在对话框中键入因变量和解释变量回归项,必须通过列表指定模型,然后选择一种计数模型的类型,如果需要的话,设置Option选项项。 37

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服