ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:166KB ,
资源ID:7010917      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7010917.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(全国初中数学竞赛辅导(初2)第01讲因式分解(1).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国初中数学竞赛辅导(初2)第01讲因式分解(1).doc

1、亿库教育网 http:/www.eku.cc 百万教学资源免费下载第一讲 因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍1运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1

2、)a2-b2=(a+b)(a-b);(2)a22ab+b2=(ab)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2)下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-

3、an-2b+an-3b2-abn-2+bn-1),其中n为奇数运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-

4、3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2(a-b)2+2c(a-b)+c2=(a-b+c)2本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2

5、 分解因式:a3+b3+c3-3abc本题实际上就是用因式分解的方法证明前面给出的公式(6)分析 我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b)这个式也是一个常用的公式,本题就借助于它来推导解 原式=(a+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+

6、b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c0时,则a3+b3+c3-3abc0,即a3+b3+c33abc,而且,当且仅当a=b=c时,等号成立如果令x=a30,y=b30,z=c30,则有等号成立的充要条件是x=y=z这也是一个常用的结论例3 分解因式:x15+x14+x13+x2+x+1分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解解 因为x16-1=(x-1)(x15+x14+x13+x2+x+1),所以说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这

7、一技巧在等式变形中很常用2拆项、添项法因式分解是多项式乘法的逆运算在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项拆项、添项的目的是使多项式能用分组分解法进行因式分解例4 分解因式:x3-9x+8分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧解法1 将常数项8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)

8、-9(x-1)=(x-1)(x2+x-8)解法2 将一次项-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 将三次项x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加两项-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项

9、并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解 (1)将-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)将4mn拆成2mn+2mn原式=(m2-1)(n2-1)

10、+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加两项+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(a

11、b+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验3换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰例6 分解因式:(x2+x+1)(

12、x2+x+2)-12分析 将原式展开,是关于x的四次多项式,分解因式较困难我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了解 设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试例7 分解因式:(x2+3x+2)(4x2+8x+3)-90分析 先将两个括号内的多项式分解因式,然后再重新组合解 原式=(x+1)(x+2)(2x+

13、1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+2)-90令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1)说明 对多项式适当的恒等变形是我们找到新元(y)的基础例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解 设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8)说明 由本题可知

14、,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式例9 分解因式:6x4+7x3-36x2-7x+6解法1 原式=6(x4+1)7x(x2-1)-36x2=6(x4-2x2+1)+2x2+7x(x2-1)-36x2=6(x2-1)2+2x2+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=2(x2-1)-3x3(x2-1)+8x=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替

15、它,即熟练使用换元法后,并非每题都要设置新元来代替整体解法2 原式=x26(t2+2)+7t-36=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x22(x-1/x)-33(x-1/x)+8=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)例10 分解因式:(x2+xy+y2)-4xy(x2+y2)分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式解 原式=(x+y)2-xy2-4xy(x+y)2-2xy令x+y=u,xy=v,则原

16、式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2练习一1分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x52分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+3233分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20第一讲 因式分解(一)多项式的因式分解是代数式恒等

17、变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍1运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a22ab+b2=(ab)2;(3)a3+b3=(a+b)(a2-ab+b

18、2);(4)a3-b3=(a-b)(a2+ab+b2)下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-abn-2+bn-1),其中n为奇数运用公式法分解因式时,要根据多项式的特点,根据字母、系

19、数、指数、符号等正确恰当地选择公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)(3)原式=(a2-2ab+b

20、2)+(-2bc+2ca)+c2(a-b)2+2c(a-b)+c2=(a-b+c)2本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc本题实际上就是用因式分解的方法证明前面给出的公式(6)分析 我们已经知道公式(

21、a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b)这个式也是一个常用的公式,本题就借助于它来推导解 原式=(a+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c0时,则a3+b3+c3-3

22、abc0,即a3+b3+c33abc,而且,当且仅当a=b=c时,等号成立如果令x=a30,y=b30,z=c30,则有等号成立的充要条件是x=y=z这也是一个常用的结论例3 分解因式:x15+x14+x13+x2+x+1分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解解 因为x16-1=(x-1)(x15+x14+x13+x2+x+1),所以说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用2拆项、添项法因式分解是多项式乘法的逆运算在多项式乘法运算时,整理、化简常将几个同类项合并为

23、一项,或将两个仅符号相反的同类项相互抵消为零在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项拆项、添项的目的是使多项式能用分组分解法进行因式分解例4 分解因式:x3-9x+8分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧解法1 将常数项8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8)解法2 将一次项-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)

24、+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 将三次项x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加两项-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种例5 分解

25、因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解 (1)将-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)将4mn拆成2mn+2mn原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn

26、+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加两项+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b

27、2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验3换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰例6 分解因式:(x2+x+1)(x2+x+2)-12分析 将原式展开,是关于x的四次多项式,分解因式较困难我们不妨将x2+x看作一个整体,并用字母y

28、来替代,于是原题转化为关于y的二次三项式的因式分解问题了解 设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试例7 分解因式:(x2+3x+2)(4x2+8x+3)-90分析 先将两个括号内的多项式分解因式,然后再重新组合解 原式=(x+1)(x+2)(2x+1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+

29、2)-90令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1)说明 对多项式适当的恒等变形是我们找到新元(y)的基础例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解 设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8)说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,

30、换元法的本质是简化多项式例9 分解因式:6x4+7x3-36x2-7x+6解法1 原式=6(x4+1)7x(x2-1)-36x2=6(x4-2x2+1)+2x2+7x(x2-1)-36x2=6(x2-1)2+2x2+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=2(x2-1)-3x3(x2-1)+8x=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体解法2 原式=x26(t2+2)+7t-36=x2(6t2+7

31、t-24)=x2(2t-3)(3t+8)=x22(x-1/x)-33(x-1/x)+8=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)例10 分解因式:(x2+xy+y2)-4xy(x2+y2)分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式解 原式=(x+y)2-xy2-4xy(x+y)2-2xy令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2练习一1分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x52分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+3233分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20亿库教育网 http:/www.eku.cc 百万教学资源免费下载

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服