1、262实际问题与反比例函数一、教学目标1利用反比例函数的知识分析、解决实际问题2渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1重点:利用反比例函数的知识分析、解决实际问题2难点:分析实际问题中的数量关系,正确写出函数解析式3难点的突破方法:用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这
2、一解决实际问题的基本思路。三、例题的意图分析教材例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。教材例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在
3、冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?五、例习题分析例1见教材分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 底面积高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2见教材分析:此题类似应用题中的“工程问题”,关系式为工作总量工作速度工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?例1(补充)某
4、气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P144千帕时所对应的气体体积,再
5、分析出最后结果是不小于立方米六、随堂练习1京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为 2完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式 3一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V10时,1.43,(1)求与V的函数关系式;(2)求当V2时氧气的密度答案:,当V2时,7.15七、课后练习1小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?答案:,v240,t122学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?