ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:109.01KB ,
资源ID:6920501      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6920501.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(二次函数与一元二次方程的关系.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数与一元二次方程的关系.doc

1、 二次函数与一元二次方程的关系 青白江区人和学校 彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函

2、数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax+bx+c=0(a、b、c为常数,且a≠0)和二次函数:y= ax+bx+c(a、b、c为常数,a≠0),不难

3、发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax+bx+c与x轴的交点坐标时,令y=0,即:ax+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax+bx+c=0的根有三种情况①b²-4ac>0时有

4、两个不等的实数根;②b²-4ac=0时有两个相等的实数根③b²-4ac<0时没有实数根,所以相应地:抛物线y= ax+bx+c与x轴的交点情况有3种:①当b²-4ac>0时,抛物线与x轴有两个交点②当b²-4ac=0时,抛物线与x轴有一个交点③当b²-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax+bx+c=0的解就是二次函数y= ax+bx+c的图像与x轴的交点的横坐标;二次函数y= ax+bx+c的图像与x轴的交点情况与一元二次方程:ax+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函

5、数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x²+(2m+3)x+2m²+1的值恒为正。 分析:要证明该函数的函数值恒为正,只要能够证明到该抛物线的开口向上且与x 轴没有交点即可,二次函数y= ax+bx+c中,当a>0时,图像开口向上;当b²-4ac<0时,抛物线与x 轴没有交点。所以本题只需证明到a>0同时b²-4ac<0。 证明:y=3x²+(2m+3)x+2m²+1 Δ=(2m+3)²-12(2m²+1)=-20(m-)²-,∵(m-)²≥0,∴-20(

6、m-)²≤0,∴Δ=-20(m-)²-<0,∴抛物线与x 轴没有交点,∵3>0,∴抛物线开口向上,∴二次函数y=3x²+(2m+3)x+2m²+1的值恒为正. 典型例题(2):二次函数的图象过点(-1,0)、(3,0),且与y轴交于(0,3),求该二次函数的解析式。本题除了用二次函数的交点式和一般式来解外,还可以用一元二次方程的根与系数的关系,即韦达定理来解决该题。过程如下:设抛物线的解析式为:y=ax+bx+c, ∵抛物线与y轴交于(0,3),∴c=3,∵二次函数的图象过点(-1,0)、(3,0),∴一元二次方程:ax+bx+c=0的两个根为x1 =-1,x2=3,∴=-1×3,∴a=-1

7、∵-=-1+3,∴ b=2,∴二次函数的解析式为:y=-x²+2x+3 典型例题(3): 如图,已知抛物线y=x2-(k+)x+k.(1)试求k为何值时,抛物线与x轴只有一个公共点;(2)若抛物线与x轴交于A、B两点(点A在点B的左边),与y轴的负半轴交于点C,试问:是否存在实数k,使△AOC与△COB相似?若存在,求出相应的k值;若不存在,请说明理由. 分析:问题(1)∵抛物线y=x2-(k+)x+k与x轴只有一个公共点,∴y=x2-(k+)x+k中Δ=0,从而可以求出k的值。问题(2)若△AOC和△COB中,当时,则△AOC和△COB相似;当时,则△AOC和△COB相似。A、

8、B两点的横坐标就是一元二次方程x2-(k+)x+k =0的两个解,所以线段OA和OB可以用含k的代数式表示出来,从而建立方程可以把k的值求出来。具体步骤如下:解:(1)∵抛物线抛物线y=x2-(k+)x+k与x轴只有一个公共点,∴。∴(k-)²=0,∴k=。(2)∵c(0,k)且k<0,∴OC=-k,x2-(k+)x+k =0,x=,∵k<0,∴x1=2k, x2 =1,∴OA=-2k,OB=1,当时,△AOC∽△BOC,∴,k=-; 当时,△AOC∽△COB∴,∴k=-2,∴当k=-或-2时△AOC和△COB相似。 通过上面的3个例子,你得到了什么启示,又有哪些收获?正是由于二次函数与一元二次方程有着密切的关系,所以在解决二次函数问题时经常会应用二元一次方程的知识。我们一定要牢牢掌握好二次函数与一元二次方程的密切关系,在面对二次函数时,巧妙的运用一元二次方程的知识来解决二次函数中的问题。 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服