ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:14.33KB ,
资源ID:6912539      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6912539.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数学教案-梯形教学设计示例.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数学教案-梯形教学设计示例.docx

1、 数学教案梯形教学设计示例2 一、教学目标 1. 把握等腰梯形的判定方法. 2. 能够运用等腰梯形的性质和判定进展有关问题的论证和计算,进一步培育学生的分析力量和计算力量 3. 通过添加帮助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想 二、教法设计 小组争论,引导发觉、练习稳固 三、重点、难点 1教学重点:等腰梯形判定 2教学难点:解决梯形问题的根本方法(将梯形转化为平行四边形和三角形及正确运用帮助线) 四、课时安排 1课时 五、教具学具预备 多媒体,小黑板,常用画图工具 六、师生互动活动设计 教师复习引入,学生阅读课本;学生在教师引导下探究等腰梯形的判定

2、,归纳小结梯形转化的常见的帮助线 七、教学步骤 【复习提问】 1什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形? 2等腰梯形有哪些性质?它的性质定理是怎样证明的? 3在讨论解决梯形问题时的根本思想和方法是什么?常用的帮助线有哪几种? 我们已经把握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今日我们就共同来讨论这个问题 【引人新课】 等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形 前面我们用等腰三角形的定理证明白等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理 例1已知:如图,在梯形 中, , ,求证: 分析:我们学过“假如一个三

3、角形中有两个角相等,那么它们所对的边相等”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就简单证明白 (引导学生口述证明方法,然后利用投影仪出示三种证明方法) (1)如图,过点 作 、 ,交 于 ,得 ,所以得 又由 得 ,因此可得 (2)作高 、 ,通过证 推出 (3)分别延长 、 交于点 ,则 与 都是等腰三角形,所以可得 (证明过程略) 例3 求证:对角线相等的梯形是等腰梯形 已知:如图,在梯形 中, , 求证: 分析:证明此题的关键是如何利用对角线相等的条件来构造等腰三角形 在 和 中,已有两边对应相等,别人要能证 ,就可通过证 得到 (引导学生说出证明思路

4、,教师板书证明过程) 证明:过点 作 ,交 延长线于 ,得 , , , 又 、 , 说明:假如 、 交于点 ,那么由 可得 , ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题供应思路 例4 画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积 分析:如图,先算出 长,可画等腰三角形 ,然后完成 的画图 画法:画 ,使 . 延长 到 使 . 分别过 、 作 , , 、 交于点 四边形 就是所求的等腰梯形 解:梯形 周长 答:梯形周长为26cm,面积为 【总结、扩展】 小结:(由学生总结) (l)等腰梯形的判定方法:先判定它是梯形再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形 (2)梯形的画图:一般先画出有关的三角形,在此根底上再画出有关的平行四边形,最终得到所求图形(三角形奠基法) 八、布置作业 l已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形 九、板书设计 十、随堂练习 教材P177中l;P179中B组2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服