ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:1.71MB ,
资源ID:6911525      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6911525.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2013年普通高等学校全国招生统一考试数学(山东卷)理科与答案(lei).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2013年普通高等学校全国招生统一考试数学(山东卷)理科与答案(lei).doc

1、2013年普通高等学校招生全国各省市统一考试数学试卷与答案 2013年普通高等学校招生全国统一考试(山东卷)高考数学理科真题精校精析一、选择题:1 复数z满足(z3)(2i)5(i为虚数单位),则z的共轭复数z为()A2i B2i C5i D5i1【答案】D解析 设zabi,(a,b),由题意得(abi3)(2i)(2ab6)(2ba3)i5,即解之得z5i.2 已知集合A0,1,2,则集合Bxy|xA,yA中元素的个数是()A1 B3 C5 D92【答案】C解析 x,y,xy值只可能为2,1,0,1,2五种情况,集合B中元素的个数是5.3 已知函数f(x)为奇函数,且当x0时,f(x)x2,

2、则f(1)()A2 B0 C1 D23【答案】A解析 f为奇函数,ff(1)2.4 已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A. B. C. D.4【答案】B解析 设侧棱长为a,ABC的中心为Q,联结PQ,由于侧棱与底面垂直,PQ平面ABC,即PAQ为PA与平面ABC所成的角又VABCA1B1C1a,解得a,tan PAQ,故PAQ.5 将函数ysin(2x)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为()A. B. C0 D5【答案】B解析 方法一:将函数ysin(

3、2x)的图像沿x轴向左平移个单位后得到f(x)sin的图像,若f(x)sin为偶函数,必有k,k,当k0时,.方法二:将函数ysin(2x)的图像沿x轴向左平移个单位后得到f(x)sin的图像,其对称轴所在直线满足2xk,k,又f(x)sin为偶函数,y轴为其中一条对称轴,即k,k,当k0时,.6 在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A2 B1 C D6【答案】C解析 不等式组表示的可行域如图,联立解得P,当M与P重合时,直线OM斜率最小,此时kOM.图117 给定两个命题p,q,若p是q的必要而不充分条件,则p是q的()A充分而不必要条件

4、B必要而不充分条件 C充要条件 D既不充分也不必要条件7A解析 p是q的必要不充分条件,q是p的充分而不必要条件,又“若p,则q”与“若q,则p”互为逆否命题,p是q的充分而不必要条件8 函数yxcos xsin x的图像大致为()图128D解析 f(x)xcos(x)sin(x)(xcos xsin x)f(x),yxcos xsin x为奇函数,图像关于原点对称,排除选项B.当x时,y10,排除选项C;x,y0)的焦点与双曲线C2:y21的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p()A. B. C. D.11D解析 抛物线C1:yx2的焦点坐标为

5、,双曲线y21的右焦点坐标为,连线的方程为y,联立 得2x2p2x2p20.设点M的横坐标为a,则在点M处切线的斜率为y|xa.又双曲线y21的渐近线方程为y0,其与切线平行,即ap,代入2x2p2x2p20得,p或p0(舍去)12 设正实数x,y,z满足x23xy4y2z0,则当取得最大值时,的最大值为()A0 B1 C. D312B解析 由题意得zx23xy4y2,1,当且仅当,即x2y时,等号成立,11.二填空题:本大题共4小题,每小题4分,共16分13 图13执行如图13所示的程序框图,若输入的的值为0.25,则输出的n的值为_133解析 第一次执行循环体时,F13,F02,n112,

6、0.25;第二次执行循环体时,F1235,F03,n213,0.25,满足条件,输出n3.14、 在区间3,3上随机取一个数x,使得|x1|x2|1成立的概率为_14.解析 当x2时,不等式化为x1x21,此时恒成立,|x1|x2|1的解集为.在上使不等式有解的区间为,由几何概型的概率公式得P.15 已知向量与的夹角为120,且|3,|2.若,且,则实数的值为_15.解析 ,220,即94320,解之得.16、 定义“正对数”:ln x现有四个命题:若a0,b0,则ln(ab)blna;若a0,b0,则ln(ab)lnalnb;若a0,b0,则lnlnalnb;若a0,b0,则ln(ab)ln

7、alnbln 2.其中的真命题有_(写出所有真命题的编号)16解析 中,当ab1时,b0,a1,ln(ab)ln abbln ablna;当0ab0,0a1,ln(ab)blna0,正确;中,当0ab1时,左边ln(ab)0,右边lnalnbln a0ln a0,不成立;中,当1,即ab时,左边0,右边lnalnb0,左边右边成立;当1时,左边lnln aln b0,若ab1时,右边ln aln b,左边右边成立;若0ba1b0,左边lnln aln bln a,右边ln a,左边右边成立,正确;中,若0ab0,左边右边;若ab1,lnln 2lnln 2ln(),又a或b,a,b至少有1个大

8、于1,ln()ln a或ln()ln b,即有lnln 2lnln 2ln()lnalnb,正确三、解答题:本大题共6小题,共74分。17、 设ABC的内角A,B,C所对的边分别为a,b,c,且ac6,b2,cos B.(1)求a,c的值;(2)求sin(AB)的值17解:(1)由余弦定理b2a2c22accos B,得b2(ac)22ac(1cosB),又b2,ac6,cos B,所以ac9,解得a3,c3.(2)在ABC中,sin B.由正弦定理得sin A.因为ac,所以A为锐角,所以cos A.因此sin(AB)sin Acos Bcos Asin B.图1418、 如图14所示,在三

9、棱锥PABQ中,PB平面ABQ,BABPBQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ2BD,PD与EQ交于点G,PC与FQ交于点H,联结GH.(1)求证:ABGH;(2)求二面角DGHE的余弦值18解:(1)证明:因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EFAB,DCAB,所以EFDC.又EF平面PCD,DC平面PCD,所以EF平面PCD.又EF平面EFQ,平面EFQ平面PCDGH,所以EFGH.又EFAB,所以ABGH.(2)方法一:在ABQ中,AQ2BD,ADDQ,所以ABQ90,即ABBQ.因为PB平面ABQ,所以ABPB.又BPBQB,图15所以AB平

10、面PBQ.由(1)知ABGH,所以GH平面PBQ.又FH平面PBQ,所以GHFH.同理可得GHHC,所以FHC为二面角DGHE的平面角设BABQBP2.联结FC,在RtFBC中,由勾股定理得FC,在RtPBC中,由勾股定理得PC.又H为PBQ的重心,所以HCPC.同理FH.在FHC中,由余弦定理得cosFHC.即二面角DGHE的余弦值为.方法二:在ABQ中,AQ2BD,ADDQ,所以ABQ90.又PB平面ABQ,所以BA,BQ,BP两两垂直以B为坐标原点,分别以BA,BQ,BP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系设BABQBP2,则E(1,0,1),F(0,0,1),Q(0

11、,2,0),D(1,1,0),C(0,1,0),P(0,0,2)所以(1,2,1),(0,2,1),(1,1,2),(0,1,2)设平面EFQ的一个法向量为(x1,y1,z1),由0,0,得取y11,得(0,1,2)设平面PDC的一个法向量为(x2,y2,z2),由0,0,得取z21,得(0,2,1)所以cos,.因为二面角DGHE为钝角,所以二面角DGHE的余弦值为.图1519、 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果

12、为30或31,则胜利方得3分、对方得0分;若比赛结果为32,则胜利方得2分、对方得1分求乙队得分X的分布列及数学期望19解:(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)()3,P(A2)C()2(1),P(A3)C()2(1)2.所以,甲队以30胜利、以31胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)C(1)2()2(1),由题意,随机变量X的所有可能的取值为0,1,2,3.根据事件的互斥性得P(X0)P(A1A2)P(A1)

13、P(A2).又P(X1)P(A3).P(X2)P(A4),P(X3)1P(X0)P(X1)P(X2),故X的分布列为X0123P所以E(X)0123.20、 设等差数列an的前n项和为Sn,且S44S2,a2n2an1.(1)求数列an的通项公式;(2)设数列bn的前n项和为Tn,且Tn(为常数),令cnb2n(n),求数列cn的前n项和Rn.20解:(1)设等差数列an的首项为a1,公差为d.由S44S2,a2n2an1得解得a11,d2,因此an2n1,n*.(2)由题意知Tn,所以n2时,bnTnTn1.故cnb2n(n1),n*.所以Rn0123(n1),则Rn012(n2)(n1),

14、两式相减得Rn(n1)(n1),整理得Rn(4)所以数列cn的前n项和Rn(4)21、 设函数f(x)c(e2.718 28是自然对数的底数,c)(1)求f(x)的单调区间、最大值;(2)讨论关于x的方程|ln x|f(x)根的个数21解:(1)f(x)(12x)e2x.由f(x)0,解得x,当x0,f(x)单调递增;当x时,f(x)0,则g(x)lnxxe2xc,所以g(x)e2x(2x1)因为2x10,0,所以g(x)0.因此g(x)在(1,)上单调递增当x(0,1)时,lnx1x0,所以1.又2x11,所以2x10,即g(x)0,即ce2时,g(x)没有零点,故关于x的方程|lnx|f(

15、x)根的个数为0;当g(1)e2c0,即ce2时,g(x)只有一个零点,故关于x的方程|lnx|f(x)根的个数为1;当g(1)e2ce2时,()当x(1,)时,由(1)知g(x)lnxxe2xclnx(e1c)lnx1c,要使g(x)0,只需使lnx1c0,即x(e1c,);()当x(0,1)时,由(1)知g(x)lnxxe2xclnx(e1c)lnx1c,要使g(x)0,只需lnx1c0,即x(0,e1c);所以ce2时,g(x)有两个零点,故关于x的方程|lnx|f(x)根的个数为2.综上所述,当ce2时,关于x的方程|lnx|f(x)根的个数为2.22 椭圆C:1(ab0)的左、右焦点

16、分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,联结PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k0,试证明为定值,并求出这个定值22解:(1)由于c2a2b2,将xc代入椭圆方程1,得y.由题意知 1,即a2b2.又e,所以a2,b1.所以椭圆C的方程为y21.(2)方法一:设P(x0,y0)(y00)又F1(,0),F2(,0)

17、,所以直线PF1,PF2的方程分别为lPF1:y0x(x0)yy00,lPF2:y0x(x0)yy00.由题意知.由于点P在椭圆上,所以y1,所以 .因为m,2x02,可得.所以mx0.因此m.方法二:设P(x0,y0)当0x02时,当x0时,直线PF2的斜率不存在,易知P(,)或P.若P,则直线PF1的方程为x4 y0.由题意得m,因为m,所以m.若P,同理可得m.当x0时,设直线PF1,PF2的方程分别为yk1(x),yk2(x)由题意知,所以.因为y1,并且k1,k2,所以,即.因为m,0x02且x0,所以.整理得m,故0m且m.综合可得0m.当2x00时,同理可得m0.综上所述,m的取值范围是.(3)设P(x0,y0)(y00),则直线l的方程为yy0k(xx0)联立整理得(14k2)x28(ky0k2x0)x4(y2kx0y0k2x1)0.由题意0,即(4x)k22x0y0k1y0.又y1,所以16yk28x0y0kx0,故k.由(2)知,所以8,因此为定值,这个定值为8.2013年普通高等学校招生全国统一考试(山东卷)理科数学答案 21

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服