ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:111.50KB ,
资源ID:6909288      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6909288.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第十二章轴对称复习案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第十二章轴对称复习案.doc

1、第十二章 轴对称复习案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形 ,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的 3.等腰三角形 叫做等腰三角形.相等的两条边叫做 ,另一条边叫做 ,两腰所夹的角叫做 ,底边与腰的夹角叫做 .4.等边三角形三条边都相等的三角形叫做 .二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上

2、的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角 (简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的 、底边上的 相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也 .(5)等腰三角形一腰上的高与底边的夹角是顶角的 。(6)等腰三角形顶角的外角平分线平行于这个三角形的 . 5.等边三角形的性质(

3、1)等边三角形的三个内角都 ,并且每一个角都等于 .(2)等边三角形是轴对称图形,共有 条对称轴.(3)等边三角形每边上的 、 和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的 上.2.如果一个三角形有两个角相等,那么这两个角所对的边 (简写成“等角对等边”).3.三个角都相等的三角形是 三角形.4.有一个角是60的 三角形是等边三角形.四、误区警示1注意分类讨论思想,如等腰三角形的周长为20,有一边为8,这时就必须讨论所给的这条边是腰还是底。再比如涉及三角形的高时,通常需要考虑高在三角形的外部还是内部。2应用“三线合一”性质作辅助线时,所作的辅助线

4、不能同时满足两线的性质(如过点A作EFBC,并使EF平分BC)。3不要认为:有一个角等于300,那么它所对的边就一定等于另一条边的一半,前提条件是在直角三角形中。五、 课堂探究(一). 专题训练1专题一:根据轴对称及线段垂直平分线性质的作图题1如图所示,EFGH是一矩形的弹子球台面,有黑、白两球分别位于A、B两点的位置上,试问:怎样撞击白球,使白球先撞击边EF反弹后再击中黑球?2. 如图所示,一牧人带马群从A点出发,先到草地边缘MN放牧,再带马群到河边缘PQ去给马饮水,试问:牧人应走哪条路线才能使总路程最短?专题二:线段垂直平分线性质的运用NMCBA1.如图所示,在ABC中,AB=AC,A=1

5、20,AB的垂直平分线MN分别交BC、AB于点M、N,求证:CM=2BM2如图所示,AD是ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连结AF求证:BAF=ACF专题三:等腰三角形边与角计算中的分类讨论思想与方程思想1已知等腰三角形的一个内角是800,则它的另外两个内角是 2已知等腰三角形的一个内角是1000,则它的另外两个内角是 3已知等腰三角形有两边的长分别为6,3,则这个等腰三角形的周长是 4已知等腰三角形的周长为24,一边长为6,则另外两边的长是 5已知等腰三角形的周长为24,一边长为10,则另外两边的长是 6等腰三角形的周长是16,其中两边之差为2,则它的三边的长

6、分别为 7等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角度数为 8一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,则这个等腰三角形的底边长是 FEDCBA9如图, DEF =36,AB=BC=CD=DE=EF,求A专题四.关于等腰三角形证明题1 如图所示,F、C是线段BE上的两点, A、D分别在线段QC、RF上, AB=DE,BF=CE,B=E,PQRFEDCBAQRBE求证:PQR是等腰三角形2.(参考题)如图,在RtABC中,AB=AC,BAC=90,D为 BC的中点.(1)写出点D到ABC三个顶点 A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动, 在移动中保持AN=BM,请判断DMN的形状,并证明你的结论NMDCBA(3)如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形(4)画出ABC关于直线l的轴对称图形ABC(5)在矩形ABCD中,将ABC绕AC对折至AEC位置,CE与AD交于点F,如图.试说明EF=DF.(6)在RtABC中,C=900,BD平分ABC交AC于点D,DE垂直平分线段AB,试找出图中相等的线段,并说明理由。若DE=1cm,BD=2cm,求AC的长4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服