1、相似三角形的判定(第3课时)教学目标:知识与技能:1.了解两角对应相等的两个三角形相似判定定理的证明过程.2.能运用三角形相似的判定定理证明三角形相似.过程与方法:1.在类比全等三角形的证明方法探究过程中,进一步体验类比思想、特殊与一般的辩证思想. 2.经历类比、猜想、探究、归纳、应用等数学活动,提高学生分析问题、解决问题的能力.3.通过应用三角形相似的判定方法和性质解决简单问题,培养学生的应用意识.情感态度与价值观:1.进一步发展学生的探究、交流、合情推理能力和逻辑推理意识,能运用三角形相似的条件解决简单问题. 2.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神,体
2、验成功带来的快乐.3.敢于发表自己的想法、勇于质疑,养成认真、独立思考、合作交流等学习习惯,形成实事求是的科学态度.教学重难点:重点:能运用两角对应相等的两个三角形相似的判定定理证明三角形相似.难点:三角形相似判定定理的证明过程.教学准备:教师准备:多媒体课件.学生准备:预习教材内容.教学过程:一、新课引入:导入一:学校为了改善环境,在一片空地上修建一块三角形草地,图纸如图(1)所示,完工后小明想要确定图(2)的草坪是否和图纸中的三角形相似,你能帮帮他吗?导入二:【复习提问】(1)三角形相似的判定定理1和2的内容是什么?(2)用什么方法证明判定定理1和2?【师生活动】学生回答问题,对学生出现的
3、问题教师及时纠正,并强调易错点.导入三:观察老师手中的一副三角尺和你手中的三角尺,其中含有相同锐角(30与60或45与45)的两个直角三角尺形状相同吗?它们分别满足什么条件?二、新知构建(一)、 两角分别相等的两个三角形相似思路一【动手操作】(1)同桌两个人分别画出ABC,其中A=37,B=65.(2)分别测量AB,BC的长度(或测量AC,AB的长度),判断两个三角形是否相似.(3)根据操作、测量,猜想判定三角形相似的方法.(4)能证明你的猜想吗?写出已知、求证和证明过程.(5)用文字语言叙述你的结论,并用几何语言表示.【师生活动】在教师的指导下,学生完成画图、测量、猜想,小组合作交流结果后,
4、共同探究证明方法,板书证明过程,教师及时帮助有困难的学生,并对学生的板书进行点评.【课件展示】两角分别相等的两个三角形相似.如图所示,已知在ABC和ABC中,A=A,B=B.求证ABCABC.证明:如图所示,在线段AB上截取AD=AB,过点D作DEBC,交AC于点E,则可得ADEABC.DEBC,ADE=B,又B=B,B=ADE,又A=A,AD=AB,ADEABC,ABCABC.思路二【思考】(1)相似三角形的判定定理1,2的证明思路是什么?(在一个三角形的一边上截取与另一个三角形一边相等的线段,作平行线构造相似三角形,通过证明截得的三角形与已知三角形全等得证)(2)三角形在放大镜的观察下,得
5、到三角形与原三角形是相似的,对应角是不变的,反过来,满足两个对应角相等的三角形是否相似呢?(3)教师用几何画板演示:改变角的大小,但始终保持两个三角形的两角分别相等,观察两个三角形是否相似.分别测量三角形的三边,得到三角形三边对应的比相等.(4)猜想你观察到的结论,你能证明你的猜想吗?【师生活动】学生思考后小组合作交流,共同完成猜想、证明,学生板书证明过程,教师帮助有困难的学生,对学生的证明过程进行指导,规范书写.【归纳结论】两角分别相等的两个三角形相似.(证明过程、几何语言同思路一)(二)、一条直角边和斜边对应成比例的两个三角形相似【思考】(1)证明直角三角形全等的方法有哪些?(SSS,SA
6、S,ASA,AAS,HL)(2)证明直角三角形相似可以用哪些方法?(三边成比例、两边成比例且夹角相等、两角分别相等的两个三角形相似)(3)类比直角三角形全等的判定方法,如果一条直角边和斜边分别成比例,两个直角三角形相似吗?(4)尝试证明你的结论.【师生活动】学生思考回答,作出猜想,小组合作交流证明思路,板书书写过程,教师帮助有困难的学生,并对学生的回答和板书点评.【课件展示】一条直角边和斜边对应成比例的两个直角三角形相似.如图所示,在RtABC和RtABC中,C=90,C=90,ABAB=ACAC.求证RtABCRtABC.【教师引导分析】由于三边成比例的两个三角形相似,而已知条件中有两边对应
7、成比例,所以只需证明另一对直角边也成比例即可.在直角三角形中三边之间的关系满足勾股定理,所以可设ABAB=ACAC=k,用勾股定理分别求出BC,BC的值,求得BCBC=k,从而得证.证明:设ABAB=ACAC=k,则AB=kAB,AC=kAC.由勾股定理,得BC=AB2-AC2,BC=AB2-AC2.BCBC=AB2-AC2BC=k2AB2-k2AC2BC=kBCBC=k.ABAB=ACAC=BCBC.RtABCRtABC.三、例题讲解(教材例2)如图所示,在RtABC中,C=90,AB=10,AC=8.E是AC上一点,AE=5,EDAB,垂足为D.求AD的长.解:EDAB,EDA=90,又C
8、=90,A=A,AEDABC,ADAC=AEAB, AD=ACAEAB=8510=4.【教师引导归纳】通过证明三角形相似,得到三角形的对应边成比例求线段的长是常用的方法.如图所示,在RtABC中,ACB=90,CDAB于D,图中共有哪几对相似三角形?并选择其中一对进行证明.【师生活动】学生独立思考后,小组合作交流,针对学生的困难进行引导分析,然后学生独立完成,并用文字语言叙述该题的结论.解析由CDAB,得ADC=CDB=90,所以图中共有三个直角三角形,根据直角三角形的两锐角互余,可得A+B=90,A+ACD=90,B+BCD=90,由同角的余角相等,得B=ACD,A=BCD,根据两角分别相等
9、的两个三角形相似易得ACDABC,CDBACB,ACDCBD.解:(1)ACDABC,CDBACB,ACDCBD.(2)答案不唯一.证明ACDABC如下:A+B=90,A+ACD=90,B=ACD,又ACB=ADC=90,ACDABC.【归纳】直角三角形斜边上的高把直角三角形分成的两个直角三角形与原三角形相似.知识拓展(1)在有一组对应角相等的情况下,可以从两个方面选择突破口:寻找另一组对应角相等;寻找两个三角形中夹这个已知角的两条边的比相等.(2)直角三角形斜边上的高把直角三角形分成的两个直角三角形与原三角形相似.(3)若两个直角三角形满足一个锐角相等或两组直角边成比例或斜边和一条直角边成比
10、例,则这两个直角三角形相似.四、课堂小结:1.相似三角形的判定定理3:两角分别相等的两个三角形相似.2.直角三角形相似的判定方法:一条直角边和斜边对应成比例的两个直角三角形相似.一个锐角相等或两边对应成比例的两个直角三角形相似. 五、检测反馈:1.如图所示,已知C=E,则不一定能使ABCADE的条件是( )A.BAD=CAEB.B=DC.BCDE=ACAED.ABDE=ACAE2.如图所示,ADE=ACD=ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对3.如图所示,在ABC中,D是AB边上一点,连接CD.请你添加一个适当的条件,使ADCACB,那么添加的条件是.六、作业布置:一
11、、教材作业【必做题】教材第42页习题27.2第2,4题.【选做题】教材第43页习题27.2第7题.教学反思: 以生活实例和熟悉的三角尺导入新课,让学生体会生活中处处有数学的同时,激发学生的学习兴趣,本节课是相似三角形判定的最后一个课时,学生已经熟悉探究方法和思路,所以本节课以学生自主学习为主,教师引导为辅完成本节课的学习,学生通过思考、小组合作交流后,类比前面证明三角形相似的方法,完成判定定理3的证明,比较轻松地突破了难点,在学生展示成果后,教师及时点拨和归纳,强化了重点.在探索直角三角形相似的判定方法中,教师及时提醒学生用类比法完成定理的证明,学生在课堂上真正成为主人,体验知识的形成过程,提高学习数学的能力,体验成功的快乐. 本节课的重点是相似三角形的判定定理3及直角三角形相似的判定方法,教学设计中主要突出学生自主学习,但是在探究定理的过程中,学生的表现没有预想的效果那么好,主要原因是平时课堂教师讲的较多,课堂只是部分学生活跃,造成部分学生在自主学习中没有方向,思维不活跃,导致在课堂上学习效率较低,在以后的教学中,多给学生展示自我的机会,让他们在数学课堂上思维活跃,提高大多数学生的学习能力.6
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100