ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:556.50KB ,
资源ID:684297      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/684297.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(线线平行与线面平行的判定及其性质.ppt)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

线线平行与线面平行的判定及其性质.ppt

1、 线线平行与线面平行线线平行与线面平行学习目标学习目标学习目标学习目标1.理理解解线线线线平平行行、线线面面平平行行的的概概念念,掌掌握握线线线线平平行行、线线面面平平行行的的判判定定定定理理,并并用用这这些些定定理理来来证证明明它它们们的平行关系的平行关系2掌掌握握线线线线平平行行、线线面面平平行行的的性性质质定定理理,并并能能用用它它们们推推证证其它的其它的结论结论3理解并掌握等角定理,并能求一些理解并掌握等角定理,并能求一些简单简单的空的空间间角度角度3、性、性质质:平行于同一条直:平行于同一条直线线的两条直的两条直线线互相平行互相平行4、等等角角定定理理:如如果果一一个个角角的的两两边

2、边与与另另一一个个角角的的两两边边分分别别平行,并且方向相同,那么平行,并且方向相同,那么这这两个角相等两个角相等一、两直一、两直线线平行平行1、平行直、平行直线线的定的定义义及平行公理及平行公理在平面几何中,我在平面几何中,我们们把把在同一平面内不相交在同一平面内不相交的两条直的两条直线线叫叫做平行做平行线线2、过过直直线线外一点外一点有且只有一条有且只有一条直直线线和和这这条直条直线线平行平行空间四边形:顺次连接空间四边形:顺次连接不共面不共面的四点的四点A、B、C、D所构成的图形,所构成的图形,叫做空间四边形叫做空间四边形.ACGDBFEH练习:课本练习:课本P40空间四边形空间四边形A

3、BCD中,中,E,F,G,H分别是边分别是边AB,BC,CD,DA的中点,的中点,求证:四边形求证:四边形EFGH是平行四边形是平行四边形。直线直线a在平面在平面 内内直线直线a与平面与平面 相交相交直线直线a与平面与平面 平行平行aaAa记为记为a 记为记为a=A记为记为a/有无数个交点有无数个交点有且只有一个交点有且只有一个交点没有交点没有交点空间直线与平面的位置关系有哪几种空间直线与平面的位置关系有哪几种?可以利用定义,即用直线与平面交点的个可以利用定义,即用直线与平面交点的个数进行数进行判定判定 但是由于直线是两端无限延伸,而平面也但是由于直线是两端无限延伸,而平面也是向四周无限是向四

4、周无限延展的,用定义这种方法来判定延展的,用定义这种方法来判定直线与平面是否平行是很困难的直线与平面是否平行是很困难的那么,是否有简单那么,是否有简单的方法来判定直线与平的方法来判定直线与平面平行呢?面平行呢?思考:如何判定一条直线和一个平面平行呢?思考:如何判定一条直线和一个平面平行呢?实例探究:实例探究:1门扇的两边是平行的,当门扇绕着一边门扇的两边是平行的,当门扇绕着一边转动时,另一边与门框所在平面具有什么样转动时,另一边与门框所在平面具有什么样的位置关系?的位置关系?2课本的对边是平行的,将课本的一边紧课本的对边是平行的,将课本的一边紧贴桌面,沿着这条边转动课本,课本的上边贴桌面,沿着

5、这条边转动课本,课本的上边缘与桌面所在平面具有什么样的位置关系?缘与桌面所在平面具有什么样的位置关系?你能从上述的你能从上述的两个实例中抽象概两个实例中抽象概括出几何图形吗?括出几何图形吗?直线直线a在平面在平面 内还是在平面内还是在平面 外?外?a/ab即直线即直线a与平面与平面 可能相交或平行可能相交或平行(因为因为a b)2 2 直线直线a与直线与直线b共面吗?共面吗?直线直线a a在平面在平面 外外3 3假如假如直线直线a与平面与平面 相交,相交,交点会在哪?交点会在哪?在直线在直线b上上a与与b共面于共面于即在平面即在平面 与平面与平面的交线上的交线上?抽象概括抽象概括直线与平面平行

6、的判定定理:直线与平面平行的判定定理:若平面外一条直线与此平面内的一条直线平行,若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行则该直线与此平面平行.a/ab仔细分析下,判定仔细分析下,判定定理告诉我们,判定直定理告诉我们,判定直线与平面平行的条件有线与平面平行的条件有几个,是什么?几个,是什么?a/ab定理中必须的条件有三个,分别为:定理中必须的条件有三个,分别为:a与与b平行,即平行,即a b(平行平行)b在平面在平面 内,即内,即b(面内面内)(面外面外)a在平面在平面 外,即外,即a用符号语言可概括为:用符号语言可概括为:简述为:线线平行简述为:线线平行线面平行线面平行已

7、知已知 l ,m ,l/m,求证:求证:l/.P 从正面思考这个问题,从正面思考这个问题,有一定的难度,不妨从有一定的难度,不妨从反面想一想。反面想一想。如果一条直线如果一条直线l和平面和平面相交,则相交,则l和和一一定有公共点,可设定有公共点,可设l=P。思考:如何证明线面平行的判定定理呢?思考:如何证明线面平行的判定定理呢?再设再设l与与m确定的平面为确定的平面为,则依据平面,则依据平面基本性质基本性质3,点,点P一定在平面一定在平面与平面与平面的的交线交线m上。上。于是于是l和和m相交,这和相交,这和l/m矛盾。矛盾。所以可以断定所以可以断定l与与不可能有公共点。不可能有公共点。即即l/

8、.证明直线与平面平行,证明直线与平面平行,三个条件三个条件必须具必须具备,才能得到线面平行的结论备,才能得到线面平行的结论线线平行线线平行 线面平行线面平行运用定理的关键是运用定理的关键是找平行线找平行线;找平行线又经常会用到找平行线又经常会用到三角形中位线定理三角形中位线定理.三个条件中注意:三个条件中注意:“面外、面内、平行面外、面内、平行”对判定定理的再认识:对判定定理的再认识:a/ab例例.空间四边形空间四边形ABCDABCD中,中,E E,F F分别为分别为ABAB,ADAD的的中点,证明中点,证明:直线直线EFEF与平面与平面BCDBCD平行平行证明:如右图,连接BD,EF 平面B

9、CDEF BD,又EF平面BCD,BD平面BCD,在ABD中,E,F分别为AB,AD的中点,即EF为中位线例题讲解:例题讲解:AEFBDC大图大图大图大图练习练习4.直线和平面平行的性质定理直线和平面平行的性质定理(1)文字语言文字语言:如果一条直线和一个平:如果一条直线和一个平面平行,经过这条直线的平面和这个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行面相交,那么这条直线就和交线平行.(2)图形语言图形语言:(3)符号语言符号语言:a/ba/a =b思考:已知线面平行能否推出线线平行呢?思考:已知线面平行能否推出线线平行呢?需要哪些条件呢?需要哪些条件呢?已知:已知:

10、l/,l ,=m,求证:求证:l/m.证明:因为证明:因为l/,所以,所以l与与没有公共点,没有公共点,又因为又因为m在在内,所以内,所以l与与m也没有公共点也没有公共点.因为因为l和和m都在平面都在平面内,且没有公共点,内,且没有公共点,所以所以l/m.这条定理,由这条定理,由“线面平行线面平行”去判断去判断“线线平线线平行行”ABCDA1D1C1B1(1)与直线与直线AB平行的平面有:平行的平面有:1、在长方体、在长方体ABCD-A1 B1 C1 D1各面中,各面中,(2)与直线与直线AA1平行的平面有:平行的平面有:平面平面CD1,CD 面面CD1,平面平面A1C1 AB 平面平面CD1

11、AB CD,AB 面面CD1,A1B1面面A1C1,ABA1B1,AB 平面平面A1C1当堂检测当堂检测:AB面面A1C1,平面平面CD1平面平面BC1小结:小结:1.直线与平面平行的判定:直线与平面平行的判定:(1)运用定义;运用定义;(2)运用判定定理:运用判定定理:线线平行线线平行线面平行线面平行2.应用判定定理时应用判定定理时,应当注意三个应当注意三个不可或缺的条件,即:不可或缺的条件,即:a/aba与与b平行,即平行,即a b(平行平行)(面外面外)a在平面在平面 外外,即即ab在平面在平面 内内,即即b(面内面内)3、证明直线与直线平行、证明直线与直线平行(1)平行传递性;()平行

12、传递性;(2)线面平行的性质定理)线面平行的性质定理(3)应用性质定理应注意的三个条件:)应用性质定理应注意的三个条件:线面平行;线面平行;线在面内;线在面内;面面相交面面相交a/a =ba/b4、线线平行线线平行线面平行(线面平行的判定定理)线面平行(线面平行的判定定理)线线平行(线面平行的性质定理)线线平行(线面平行的性质定理)线面平行线面平行2、如图,正方体、如图,正方体ABCDA1B1C1D1中,中,E为为DD1的中点,证明的中点,证明BD1平面平面AEC证明:连结证明:连结BD交交AC于于O,连结连结EOE,O分别为分别为DD1与与BD的中点的中点C1CBAB1DA1D1EO在在BDD1中,中,EOBD1BD1 平面平面AEC而而EO平面平面AEC,BD1平面平面AEC CCBABDAD

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服