1、 让任何人在任何地方任何时候享受最好的教育服务初三数学教学案执笔:周广雄审核:初三数学备课组课题:7.2正弦、余弦(一)课型:新授时间:2006-12-5学习目标1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。学习过程一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?20m13m2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时
2、,它的对边与斜边的比值_;它的邻边与斜边的比值_。(根据是_。)2、正弦的定义如图,在RtABC中,C90,我们把锐角A的对边a与斜边c的比叫做A的_,记作_,即:sinA_=_.3、余弦的定义如图,在RtABC中,C90,我们把锐角A的邻边b与斜边c的比叫做A的_,记作=_,即:cosA=_=_。(你能写出B的正弦、余弦的表达式吗?)试试看._.4、牛刀小试根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。5、思考与探索怎样计算任意一个锐角的正弦值和余弦值呢?(1) 如图,当小明沿着15的斜坡行走了1个单位长度时,他的位置升高了约0.26个单位长度,在水平方向前进了约0.97个单位
3、长度。根据正弦、余弦的定义,可以知道:sin150.26,cos150.97(2)你能根据图形求出sin30、cos30吗?sin75、cos75呢?sin30_,cos30_.sin75_,cos75_.(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。(4)观察与思考:从sin15,sin30,sin75的值,你们得到什么结论?_。从cos15,cos30,cos75的值,你们得到什么结论?_。当锐角越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?_。6、锐角A的正弦、余弦和正切都是A的_。三、随堂练习1、如图,在RtABC中,C90,AC12,BC5,则sin
4、A_,cosA_,sinB_,cosB_。2、在RtABC中,C90,AC1,BC,则sinA_,cosB=_,cosA=_,sinB=_.3、如图,在RtABC中,C90,BC9a,AC12a,AB15a,tanB=_,cosB=_,sinB=_4、在RtABC中,如果各边长度都扩大3倍,则锐角A的各个三角函数值()A、不变化B、扩大3倍C、缩小D、缩小3倍5、根据图示填空(1)(2)(3)(4)6、若090,则下列说法不正确的是()A、sin随的增大而增大B、cos随的增大而减小C、tan随的增大而增大D、sin、cos、tan的值都随的增大而增大7、在RtABC中,ACBC,C90,求(1)cosA;(2)当AB4时,求BC的长。8、在RtABC中,C90,tanA,AB10,求BC和cosB。四、请你谈谈本节课有哪些收获?五、拓宽和提高已知在ABC中,a、b、c分别为A、B、C的对边,且a:b:c5:12:13,试求最小角的三角函数值。 第 - 4 - 页 共 4页