ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:337.50KB ,
资源ID:677826      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/677826.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(线性关系的分析:相关与回归---《量化研究与统计分析》教学幻灯片(繁体中文)-PPT课件.ppt)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

线性关系的分析:相关与回归---《量化研究与统计分析》教学幻灯片(繁体中文)-PPT课件.ppt

1、 量化研究與統計分析.第十三章線性關係的分析:相關與迴歸Analysis of Linear Relationship:Analysis of Linear Relationship:Correlation and RegressionCorrelation and Regression1第十三章 相關與迴歸 量化研究與統計分析.課程目標瞭解線性關係的概念瞭解相關係數的原理瞭解其他類型的相關係數的概念瞭解迴歸分析的原理瞭解迴歸分析的假設熟習相關與迴歸的SPSS統計應用2第十三章 相關與迴歸 量化研究與統計分析.線性關係的分析原理線性關係(線性關係(linear relationship)指兩個

2、變項的關係呈現直線般的共同變化數據的分佈可以被一條最具代表性的直線來表達的關聯情形。該直線之方程式為Y=bx+a,b為斜率(即y/x,每單位的X變動時,在Y軸上所變動的量)線性關係可以散佈圖來表現線性關係可以散佈圖來表現 第一節3第十三章 相關與迴歸 量化研究與統計分析.五種不同的相關情形完全正相關(perfect positive correlation)完全負相關(perfect negative correlation)正相關(positive correlation)負相關(negative correlation)零相關(zero correlation)第二節4第十三章 相關與迴歸

3、 量化研究與統計分析.相關分析的圖示第二節5第十三章 相關與迴歸 量化研究與統計分析.積差相關的假設考驗 相關係數是否具有統計上的意義,則必須透過統計考驗(t-test)來判斷從樣本得到的r是否來自於相關為0的母體,即H0:XY=(0=0)相關係數的t檢定的自由度為N-2,因為兩個變項各取一個自由度進行樣本變異數估計 第二節6第十三章 相關與迴歸 量化研究與統計分析.相關係數的特質1.隨著共變數的大小與正負向,相關係數可以分為正相關(完全正相關)、負相關(完全負相關)、零相關五種情形。2.相關的大小需經顯著性檢定來證明是否顯著(是否有統計上的意義)。3.相關係數介於-1至1之間。4.相關情形的

4、大小非與r係數大小成正比5.相關並不等於因果6.相關係數沒有單位,可以進行跨樣本的比較第二節7第十三章 相關與迴歸 量化研究與統計分析.相關係數的強度大小與意義 第二節8第十三章 相關與迴歸 量化研究與統計分析.點二系列相關係數適用於二分變數的相關係數計算適用於二分變數的相關係數計算rpb的係數數的係數數值值介於介於1.0之間,之間,絕絕對對值值越大,表示兩個變項越大,表示兩個變項的關係越強的關係越強當rpb係數為正時,表示二分變項數值大者,在連續變項上的得分越高當rpb係數為負時,表示二分變項數值小者,在連續變項上的得分越高當當p與與q數數值值為越接近為越接近0.5時,時,rpb的數的數值值

5、才有可能接近才有可能接近1.0二分變項也可以視為一種連續變項,其與其他任何連續變二分變項也可以視為一種連續變項,其與其他任何連續變項的相關,即等於項的相關,即等於Pearsons r 第三節9第十三章 相關與迴歸 量化研究與統計分析.eta係數 適用於一個類別變項與連續變項的相關,可以反應非線性關係的強度 原理是計算類別變項的每一個數值(類別)下,連續變項的離散情形佔全體變異量的比例各類別中,在連續變項上的組內離均差平方和,佔總離均差平方和的百分比(以X無法解釋Y的誤差部分),比例越小,表示兩變項的關聯越強 係數數值類似積差相關係數,介於0至1之間,取平方後稱為2,具有削減誤差百分比(PRE)

6、的概念,又稱為相關比(correlation ratio)第三節10第十三章 相關與迴歸 量化研究與統計分析.偏相關與部分相關 偏相關(偏相關(partial correlation)與部分相關)與部分相關(part correlation)計算兩個變項的相關係數時,把第三變項的影響加以控制的技術(b)YXYX(a)C(c)YXC(d)YXC(e)YXC第三節11第十三章 相關與迴歸 量化研究與統計分析.淨相關與部份相關 線性關係的統計控制線性關係的統計控制如果兩個連續變項之間的關係,可能受到其他變項的干擾之時,或研究者想要把影響這兩個變項的第三個變項效果排除,可以利用控制的方式,將第三變項的

7、效果進行統計的控制。淨相關淨相關 在計算兩個連續變項X1與X2的相關之時,將第三變項(X3)與兩個相關變項的相關r13與r23予以排除之後的純淨相關,以r123來表示。部份相關部份相關 計算X1與X2的單純相關,如果在計算排除效果之時,僅處理第三變項與X1與X2當中某一個變項的相關之時,所計算出來的相關係數,稱之為部份相關,或稱為半淨相關(semipartial correlation)第三節12第十三章 相關與迴歸 量化研究與統計分析.均值迴歸(regression toward the mean)緣起緣起1855年,英國學者Galton以“Regression toward mediocr

8、ity in heredity stature”,分析孩童身高與父母身高之間的關係父母的身高可以預測子女的身高:當父母身高越高或越矮時,子女的身高會較一般孩童高或矮當父母親身高很高或很矮(極端傾向)時,子女的身高會不如父母親身高的極端化,而朝向平均數移動(regression toward mediocrity)第四節13第十三章 相關與迴歸 量化研究與統計分析.迴歸原理迴歸原理迴歸原理將連續變項的線性關係以一最具代表性的直線來表示,建立一個線性方程式Y=bX+a,b為斜率,a為截距 透過此一方程式,代入特定的X值,求得一個Y的預測值。此種以單一獨變項X去預測依變項Y的過程,稱為簡單迴歸(si

9、mple regression)最小平方法與迴歸方程式最小平方法與迴歸方程式 配對觀察值(X,Y),將X值代入方程式,得到的數值為對Y變項的預測值,記為Y差值Y-Y稱為殘差(residual),表示利用迴歸方程式無法準確預測的誤差最小平方法:求取殘差的平方和最小化的一種估計迴歸線的方法利用此種原理所求得的迴歸方程式,稱為最小平方迴歸線第四節14第十三章 相關與迴歸 量化研究與統計分析.迴歸方程式與未標準化迴歸係數 迴歸方程式迴歸方程式 的斜率與截距的斜率與截距 第四節15第十三章 相關與迴歸 量化研究與統計分析.標準化迴歸係數(standardized regression coefficie

10、nt)標準化迴歸係數標準化迴歸係數將b值乘以X變項的標準差再除以Y變項的標準差,即可去除單位的影響,得到一個不具特定單位的標準化迴歸係數標準化迴歸係數稱為(Beta)係數。係數是將X與Y變項所有數值轉換成Z分數後,所計算得到的迴歸方程式的斜率 係數具有與相關係數相似的性質,數值介於-1至+1之間絕對值越大者,表示預測能力越強,正負向則代表X與Y變項的關係方向 第四節16第十三章 相關與迴歸 量化研究與統計分析.迴歸誤差與可解釋變異 觀察值Y=bX+a+e 迴歸方程式為誤差為兩者之差:e=Y-Y第四節17第十三章 相關與迴歸 量化研究與統計分析.迴歸解釋變異量 迴歸解釋變異量迴歸解釋變異量(R2

11、)表示使用X去預測Y時的預測解釋力(獨變項對於依變項的解釋力)即Y變項被自變項所削減的誤差百分比 第四節18第十三章 相關與迴歸 量化研究與統計分析.調整迴歸解釋變異量 R2無法反應模型的複雜度(或簡效性)無法反應模型的複雜度(或簡效性)簡效性(簡效性(parsimony)問題)問題不斷增加獨變項,R2不會減低(R2為獨變項數目的非遞減函數)研究者為了提高模型的解釋力,不斷的投入獨變項,每增加一個獨變項,損失一個自由度,最後模型中無關的獨變項過多,自由度變項,失去了簡效性調整後調整後R2(adjusted R2)為了處罰增加獨變項所損失的簡效性,將自由度的變化作為分子與分母項的除項加以控制,可

12、以反應因為獨變項數目變動的簡效性損失的影響 當獨變項數目(p)越多,adjR2越小當樣本數越大,對於簡效性處罰的作用越不明顯 第四節19第十三章 相關與迴歸 量化研究與統計分析.迴歸模型的顯著性考驗 R2的基本原理是變異數,因此對於的基本原理是變異數,因此對於R2的檢的檢定可利用定可利用F考驗來進行考驗來進行 第四節20第十三章 相關與迴歸 量化研究與統計分析.估計標準誤 預測誤差預測誤差e是一個呈現常態分配的隨機變數,平是一個呈現常態分配的隨機變數,平均數為均數為0,標準差為,標準差為se估計標準誤的計量性質是標準差,因此可用以反估計標準誤的計量性質是標準差,因此可用以反應誤差分配的離散情形

13、應誤差分配的離散情形標準誤越大,估計誤差越大標準誤越小,估計誤差越小 估計標準誤估計標準誤取誤差變異的平方和除以自由度(N-k-1)的開方,亦即F考驗當中的誤差均方(MSe)的開方 第四節21第十三章 相關與迴歸 量化研究與統計分析.迴歸模型的參數估計 個別的迴歸係數個別的迴歸係數b或或 可以用以可以用以說說明預測變項對於明預測變項對於依變項的解釋力依變項的解釋力迴歸係數數迴歸係數數值值的統計意義需經過假設考驗來檢驗的統計意義需經過假設考驗來檢驗R2的顯著性考驗是迴歸分析的整體考驗(overall test)迴歸係數的考驗可視為事後考驗(post hoc test)迴歸係數的考驗迴歸係數的考驗

14、H0:=0利用t檢定,自由度為N-p-1:第四節22第十三章 相關與迴歸 量化研究與統計分析.迴歸係數的區間估計 b係數為未標準化係數,用以反應獨變項對於依變項的影響程度b係數可以得知獨變項的變動在依變項的變動情形利用模型的迴歸係數標準誤,b係數的區間估計可用來推估母數出現的範圍利用b係數的95%信心估計區間是否涵蓋0,來檢驗b係數是否顯著不等於0第四節23第十三章 相關與迴歸 量化研究與統計分析.迴歸分析的基本假設(一一)固定自變項假設(固定自變項假設(fixed variable)特定自變數的特定數值應可以被重複獲得,然後得以此一特定的Xi代入方程式而得到預測值。(二二)線性關係假設(線性

15、關係假設(linear relationship)當X與Y的關係被納入研究之後,迴歸分析必須建立在變項之間具有線性關係的假設成立上。(三三)常態性假設(常態性假設(normality)迴歸分析中的所有觀察值Y是一個常態分配,即Y來自於一個呈常態分配的母群體。因此經由迴歸方程式所分離的誤差項e,即由特定Xi所預測得到的與實際Yi之間的差距,也應呈常態分配。誤差項e的平均數為0。(四四)誤差獨立性假設(誤差獨立性假設(independence)誤差項除了應呈隨機化的常態分配,不同的X所產生的誤差之間應相互獨立,無相關存在,也就是無自我相關(nonautocorrelation)。(五五)誤差等分散性假設(誤差等分散性假設(homoscedasticity)多元共線性假設)多元共線性假設 特定X水準的誤差項,除了應呈隨機化的常態分配,且其變異量應相等,稱為誤差等分散性 第四節24第十三章 相關與迴歸 量化研究與統計分析.等分散性假設圖示第四節25第十三章 相關與迴歸 量化研究與統計分析.Time for restChapter 13 is done here.See you later!26第十三章 相關與迴歸

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服