ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:305.01KB ,
资源ID:6771932      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6771932.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(专题六不等式学生版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

专题六不等式学生版.doc

1、第九节——不等式 【考点整合及典例分析】 考点1.不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则); (3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则. 【例1】对于实数中,给出下列命题: ①;②;③;④;⑤;⑥; ⑦;⑧,则. 其中正确的命题是____ 【例2】已知,,则的取值范围是______ 【例3】已知,且则

2、的取值范围是______ 考点2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法; (5)分子(或分母)有理化; (6)利用函数的单调性; (7)寻找中间量或放缩法 ; (8)图象法. 其中比较法(作差、作商)是最基本的方法. 【例4】设,比较的大小 变式1、比较1+与的大小 变式2、设,,,试比较的大小 注意点:利用重要不等式求函数最值时,你是否

3、注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针. 【例5】下列命题中正确的是( ) A、的最小值是2 B、的最小值是2 C、的最大值是 D、的最小值是 【例6】若,则的最小值是______ 变式3、正数满足,则的最小值为___ ___(你能有几种方法求解?) 常用不等式有: (1)(根据目标不等式左右的运算结构选用) ; (2)a、b、cR,(当且仅当时,取等号);(证明一下) (3)若,则(糖水的浓度问题). 【例7】如果正数、满足,则的取值范围

4、是_________若改成求a+b的范围呢? 考点三、证明不等式的方法: 比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论.). 【例8】已知,求证: 变式4、已知,求证: 【例10】求证:. 考点四、不等式的解法 ①简单的一元高次不等式的解法:标根法 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲

5、线;并注意奇穿过偶弹回; (3)根据曲线显现的符号变化规律,写出不等式的解集. 【例11】解不等式. 变式5、不等式的解集是 【例12】设函数、的定义域都是R,且的解集为,的解集为,则不等式的解集为____ 【例13】要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是____ __. ②.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母

6、分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解.解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母. 变式6、解不等式 【例14】关于的不等式的解集为,则关于的不等式的解集为_______ ③.绝对值不等式的解法: (1)分段讨论法(最后结果应取各段的并集) 【例15】解不等式 (2)利用绝对值的定义(3)数形结合 【例16】解不等式 (4)两边平方 【例17】若不等式对恒成立,则实数的取值范围为 ④.含

7、参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”.注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 【例18】若,则的取值范围是 【例19】解不等式 提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示; (2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值. 【例20】关于的不等式 的解集为,则不等式的解集为_____

8、 考点五、不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题 若不等式在区间上恒成立,则等价于在区间上 若不等式在区间上恒成立,则等价于在区间上 【例21】设实数满足,当时,的取值范围是 【例22】不等式对一切实数恒成立,求实数的取值范围 【例23】若不等式对满足的所有都成立,则的取值范围_____ 【例24】若不等式对于任意正整数恒成立,则实数的取值范围是__ 【例25】若不等式对的所有实数都成立,求的取值范围. 2). 能成立问题 若在区间上存在实数使不等式成立,则等价于在区间上; 若在区间上存在实数使不等式成立,则等价于在区间上的. 【例26】已知不等式在实数集上的解集不是空集,求实数的取值范围______ 第 6 页 共 6 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服