1、北湖实验学校七年级集体备课北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.11总 课时课题6.1平方根【第一课时】第 教时教学目标【知识与技能】 了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。【过程与方法】 理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。重点理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。第二次备
2、课难点会用平方根的概念求某些数的平方根,并能用根号加以表示。教学过程一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712)这样无限不循环的小数就叫做无理数。3、你还能举出哪些无理数?(,)、1/3是无理数吗?4、有理数和无理数统称为实数。(二)知识归纳:1、板书:1.
3、1平方根2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10.8120=0.09平方米。由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。4、练习:由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。6、说一说:9,16
4、,25,49的一个平方根是多少?(三)探求新知:1、4的平方根除了2以外,还有别的数吗?2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。6、0的平方根有且只有一个:0。 0的平方根记作,即=0。7、负数没有平方根。8、求一个非负数的平方根,叫做开平方。(四)巩固练习:1、分别求下列各数的平方根:36,25/9,1.21。(6和-6,5/
5、3和-5/3,1.1和-1.1)(也可用号表示)2、分别求下列各数的算术平方根:100,16/25,0.49。 (10,4/5,0.7)三、小结与提高:1、面积是196平方厘米的正方形,它的边长是多少厘米?2、求算术平方根:81,25/144,0.16教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时课题6.1平方根【第二课时】第 教时教学目标知识与技能】 通过学习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。【过程与方法】 理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其
6、近似值。【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。第二次备课难点熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。教学过程一、复习导入1、求下列各数的平方根:0.81, 49/64, 2、的算术平方根是( B )A3 B3 C9 D93、下列语句中正确的是( C )A 的平方根是 B 的算术平方根是 C 的平方根是 D 的算术平方根是二、新授(一)平方根与算术平方根1、如果r是正数a的一个平方根,那
7、么a的平方根有且只有两个:r与-r。我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。2、0的平方根有且只有一个:0。0的平方根记作,即=0。3、负数没有平方根。4、求一个非负数的平方根,叫做开平方。5、小结:平方根的性质 一个正数有两个平方根,它们互为相反数;0只有一个平方根,它就是0本身;负数没有平方根。 算术平方根的性质 正数的算术平方根是正数;0的算术平方根就是0;负数没有算术平方根。(二)课堂练习1、求下列各数的算术平方根:8+( )2; b2-2b+1 (b0,则的值是( )A3 B9 C D3三、解答1、; 2、4x2-49=0; 3、(25/8
8、1)x2=1;4、求8+(-1/6)2的算术平方根;5、求b2-2b+1的算术平方根;(b1)6、 ;7、 ;(用四舍五入方法取到小数点后面第三位)8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时课题1.2 立方根第 教时教学目标1通过对具体问题的分析,使学生感受到立方根在现实生活中的客观存在,了解立方根的概念。2会求某些数的立方根,会用科学计算器求立方根及其近似值。教学过程重点会计算一个数的立方根第二次备课难点理解立方根的感念教学
9、过程一 创设情境,导入新课来源:学+科+网1复习:(1)什么叫平方根?什么叫算术平方根?(2)平方根有什么性质?2 动脑筋:一个正方体水晶砖,体积为8立方厘米,它的棱长是多少?二 合作交流,探究新知1 交流讨论上面问题2,引入立方根的概念等于8立方厘米的正方体,它的棱长是2厘米。在实际问题中常常要找一个数使它的立方等于一个给定的数,如果一个数b,使得,那么我们把b叫作a的一个立方根。如:,则叫的一个立方根。 我们知道非负数a的平方根可以表示为:,怎样表示a的立方根呢?2 通过具体问题探究立方根的性质,从而引入立方根的表示方法。说一说下列各数的一个立方根 27、-27、64、-64、,0,0.0
10、01。-0.001 思考:(1)一个正数的平方根有两个,一个正数的立方根会不会也有两个呢? (2)负数没有平方根,负数有没有立方根?为什么会有这样的区别? (3)一个非负数的平方根表示为,一个数a的立方根怎么样表示呢?(注意强调一方面怎样区别二次方根与三次方根,另一方面说明三次方根前为什么不要带“”)3 开立方运算的概念我们知道求一个数的平方根的运算叫开平方根,求一个数的立方根的运算叫什么呢? 求一个数的立方根,就叫对这个数开立方。三 应用迁移,巩固提高1 利用立方根的定义求立方根例1 求下列各数的立方根125,-216,1000,-0.027,2 加深立方根定义的理解例2 (1)我们知道2是
11、8的立方根,8的立方根记着:,因此,=2,所以,由此你发现了什么呢?一个数的立方根的立方就等于这个数。你能用字母表示吗?()(2)如果,那么r叫a的立方根,如果,那么r叫谁的立方根呢?r等于多少呢?的立方根怎么表示呢?你发现了什么? =a,(3)求下列各式的值, 例3 解方程:3 用计算器求一个数的立方根例4 用计算器求下列各数的立方根343,-1.331例5 用计算器求的近似值(用四舍五人法取到小数点后面第三位)4 立方根的应用例6 如果球的半径为r那么球的体积可用公式来计算,当球的体积为500时,求球的半径r(取3.14,精确到0.01)来源:学*科*网四 课堂练习,巩固提高P 10 1、
12、2、3补充求下列各式的值:,五反思小结,巩固提高填写下表平方根立方根x k b 1 . c o m定义性质举例教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时执教人执教时间执教班级七1课题 1.3 实数(第一课时)第 教时教学目标1 了解实数的概念,知道实数与数轴上的点一一对应;2了解有理数运算律在实数范围内仍然适用;3 会估计一个无理数的范围。重点实数的概念、有理数运算律在实数范围内也适用第二次备课难点理解实数与数轴上的点一一对应教学过程一 创设情境,引入新课1 什么叫有理数?什么叫无理数?2 下列各数中,哪些是有理数?哪些是无理数?二 合作交流,
13、探究新知1、实数的概念有理数和无理数统称为实数,所以的实数组成的集合叫作实数集。2、实数与数轴上的点的关系我们知道所有的有理数可以用数轴上的点来表示,无理数可不可以用数轴上的点来表示呢?(1)怎样用数轴上的点来表示?方法:把半径等于的圆放到数轴上,圆上一点A与原点重合,圆沿着数轴滚动一周,点A的终点表示 (做一个教具演示)(2)怎样表示无理数?方法:从第5页的探究问题可以知道边长为2的正方形的对角线长为,因此,以0为圆心,以边长为2的正方形的对角线长为半径作弧与数轴的交点就是(教师示范)总结:其实每一个实数数都可以用数轴上的点来表示,因此数轴上的每一个点都表示唯一的一个实数。这两层意思合起来就
14、是:实数和数轴上的点一一对应。观察数轴:正实数在数轴上什么位置?负实数呢?正、负实数与零点大小有什么关系?正实数在原点的右边,负实数在原点的左边,正实数大于零,负实数小于零。2、实数怎样分类?(1)有理数怎样分类?按正、负性分: 按整、分性分:(2)实数怎样分类呢?模仿有理数的分类请你给实数分类。 3、有理数范围内的一些数学概念,运算法则,运算定律是否适合无理数呢?请你回顾:(1)几个常用概念 什么叫相反数?只有符合不同的两个数叫互为相反数,零的相反数是零。这个概念适合实数,如:是一对互为相反数,实数a的相反数是_,实数(a+b)的相反数是_,实数(a-b)的相反数是_. 什么叫绝对值?数轴上
15、一个数表示的点离开原点的距离叫这个数的绝对值。这个概念也适合实数。如:考考你:A 一个正实数的绝对值等于_, B 一个负实数的绝对值等于_C 零的绝对值等于_, D 什么数的绝对值等于本身?E 什么数的绝对值等于它的相反数? F 互为相反数的两个实数的绝对值有什么关系?什么叫互为倒数?如果两个数的积等于1,这两个数叫互为倒数。其中一个叫另一个的倒数这两个数也可以是实数,如:,的倒数是(2)有理数范围内学过有哪些运算定律?请你用语言叙述,用式子表达。加法交换律:a+b=_,加法结合律:(a+b)+c=_ 乘法交换律:ab=_乘法对加法的分配律:a(b+c)=_,这些字母a、b、c可以代表实数。来
16、源:学#科#网(3)有理数范围内学过下列运算法则,你还记得吗? a+0=_,a+(-a)=_,=_,a-b=_,ab=_这些法则也适合实数,即字母a、b可以代表实数(4)在有理数范围内,如果两个数都不等于0,这两个数的乘积会等于0吗?在实数范围内也有这条性质,即如果,则ab(5)在有理数范围内怎样比较大小?如果a-b0,则ab,如果a-b0,则ab,正数大于负数,两个负数,绝对值小的反而大,数轴上右边的点表示的数总比左边的点表示的数大。在实数范围内也可以这样比较大小。(6)以前学过的数、式、方程(组)、不等式(组)的性质、解法、对于实数也同样适用(7)平方根、立方根的概念和性质对于实数也同样适
17、用。三 应用迁移,巩固提高例1 把下列各数填入相应的集合内:-5,3.7,填入相应的集合里。有理数集合_,无理数集合_,正实数集合_,负实数集合_.相反数倒数绝对值例2 填表例3 实数a、b在数轴上的位置如图所示,则化简的结果是( )A 2a+b B b C 2a-b D b例4 不用计算器估计的大小例5 不用计算器,估计的大小四课堂练习,巩固提高P 15 1.2五 反思小结,拓展提高这节课内容比较杂,你认为重点要掌握什么?1实数的概念 2 有理数范围内的概念和运输法则运算定律都适合实数。教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时课题1.3 实
18、数(第二课时)第 教时教学目标1 知道有效数字的概念;2 会按要求进行近似数的运算重点会保留近似数第二次备课难点理解无理数的近似数教学过程一、创设情境,导入新课1 什么叫实数?实数怎么分类?2 在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?3 做一做如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?二、合作交流,探究新知1 交流上面问题的做法(1)估计同学们会有两种做法:用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)来源:学#科#网(2)用计算器直接
19、求出的近似值,用四舍五入取到小数点后面第一位,得:如果没有两种做法,也要想办法引出这两种做法两种做法的答案不同,哪一种答案正确呢?请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?这时两种做法的答案就一样了从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。2、引入有效数字的概念在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?先思考:0.010256精确到小数点后面第三位,
20、等于多少呢?0.0102560.0103近似数0.0103有三个有效数字1、0、3现在你能说说,什么叫近似数的有效数字吗?从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。考考你:1 近似数0.03350有几个有效数字,分别是_. 2 125万保留两个有效数字等于_ 3 有_个有效数字。3、怎样进行近似值的运算?(1) 在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。(2)在进行近似数
21、的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)考考你:1 计算(精确到小数点后面第二位)(1),(2)2 计算(保留三个有效数字)(1) (2) 三、应用迁移,巩固提高来源:学,科,网1 实践应用例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?变式:上面问题中27倍改为:8倍,其他不变2 冲刺奥赛例4 已知求a+b的值。例5 设a、b为实数,且求的值。四、反思小结,拓展提高这节课,你认为最重要
22、的是什么?1 有效数字的概念;2 实数的近似数的计算教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时课题1.4 平面直角坐标系(第一课时)第 教时教学目标1了解平面直角坐标系的概念,知道平面上的点与有序实数点一一对应。2能画出平面直角坐标系,写出平面内点的坐标,并能根据点的坐标找点。重点平面直角坐标系的概念第二次备课难点点与有序实数点一一对应教学过程一 创设情境,导入新课。1 你知道四川大地震的地理位置吗?北京时间2008年5月12日14时28分,在四川汶川县(北纬31.0度,东经103.4度)发生7.8级地震。重庆、山西、陕西、湖北等地有震感。14
23、时35分左右,北京通州发生3.9级地震。2 你了解钓鱼岛的地理位置和价值吗?钓鱼岛,全称“钓鱼台群岛”,日本称为“尖阁列岛”。位于中国台湾省基隆市东北约92海里的东海海域,是台湾省的附属岛屿,由钓鱼岛、黄尾岛、赤尾岛、南小岛、北小岛、大南小岛、大北小岛和飞濑岛等岛屿组成,总面积约7平方公里。位于北纬25度至北纬26度,东经121度30分至东经126度四线之间,距基隆102海里,距那霸230海里。其海域为新三纪沉积盆地,富石油。 据1982年估计当在737亿1574亿桶。从上面两个问题你体会到在一个平面内表示一个点的位置要用到几个数?怎样表示平面内点的位置呢?我们这节课来学习这个问题-平面直角坐
24、标系x k b 1 . c o m二 合作交流,探究新知1 引入平面直角坐标系的概念说一说1 谁能告诉我班长在教室里的准确位置?(我新接的班,还不认得学生)2 (1)电影票上怎样应当怎样写,观众才能找到座位呢?(交流) (2)有两张电影票:A :6排3号,B ,3排6号,这两张票中的“6”含义有什么不同呢? (3)如图,怎样表示图中点A、B的位置呢?(估计学生的方法会不同,可能会说第几行第几排,也可能会想到建立直接坐标系)从上面问题引入直接坐标系的概念画两根互相垂直的数轴,一根叫横轴(也叫x轴),另一个根叫纵轴(也叫y轴),它们的交点叫坐标原点,横轴以向右的方向为正方向,纵轴以向上的方向为正方
25、向。单位一般一致,但也可以不一致。这样建立的两根数轴叫平面直角坐标系。记作:Oxy,坐标平面被分成了四个部分,分别叫:第一象限,第二象限,第三象限,第四象限。坐标轴上的点不属于任何象限。2 建立平面直角坐标系有什么好处?(1) 坐标平面内的点可以用一对有序实数来表示如图中的点B可以表示为(2,1)点E可以表示为(1,2)注意横轴上的数写在前面,纵轴上的数写在后面,中间用逗号隔开。请你比较(2,1),(1,2)这两个实数对有什么不同?点B和点E的位置是否相同?(2)你能说出图中点A、C、D的坐标吗?(3)如图表示,用有序实数对表示点M,N教师介绍找坐标的方法,然后引入坐标的概念再要求学生在P20
26、面任意找两个点,再找出它的坐标。(4)有一个点的坐标是(3,4)你能找到这个点吗?(5)从上可知,在建立了平面直角坐标系后,平面上的点和有序实数对一一对应。3 坐标轴上的点的坐标(1)你能找出图中点P和点Q的坐标吗?(2)你能找到点(2,0)和(-3,0),(0,0)的点吗?(3)由此你发现坐标轴上的点的坐标有什么特点吗?(4)你还能知道每个象限内的点的坐标有什么特点吗?三 应用迁移,巩固提高x k b 1 . c o m做一做 p 21 四 课堂练习,巩固提高P 2121 练习 1、2、3五 反思小结,拓展提高这一节课学习了什么?1什么叫直接坐标系?2 建立直接坐标系有什么好处?作业P 26
27、 A组 1、2,B组1补充:1 点P(-m,m-1)在第三象则m的取值范围是_,2 平面直角坐标系内地一点M的坐标记作,则M点到x轴的距离是_,到y轴的距离是_.3 若点P(2a,a-3)在y轴上,则点p的坐标为_4 平面直角坐标系中,点P(x,y)在第三象限,且点P到x轴的距离分别是3,7,则P点的坐标为_教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时执教人执教时间执教班级七1课题1.4 平面直角坐标系(第二课时)第 教时教学目标1 了解平移公式及轴反射公式,能写出在平移或轴反射下点的坐标。2 会用方位角加距离表示物体的位置。重点理解和运用平移公
28、式、轴反射公式,会建立适当的直接坐标系描述实物的位置。第二次备课难点理解和运用平移公式。教学过程一 创设情境,导入新课1 (学生课前做好)做一个等边三角形ABC,使它的边长等于3cm,画平面直接坐标系,以1cm做一个单位。2.把三角形ABC的顶点C放到坐标原点上,BC边与X轴重合,建立平面直接坐标系,你能写出三个顶点的坐标吗?我们把三角形ABC的这个位置叫起始位置。二 动手操作,探究规律1 平移公式(1)请你把三角形ABC沿x轴从点O开始向右分别移1个单位,你能写出平移后的三角形三个顶点的坐标吗?如果是2个单位呢?(2)请你把三角形ABC放回起始位置,再向左平移1.5个单位,你能写出平移后的三
29、角形的三个顶点的坐标吗?如果是3个单位呢?(3)请你把三角形ABC放回起始位置,再沿y轴把它向上平移1个单位,你能写出平移后的三角形三个顶点的坐标吗?如果是2个单位呢?(4)把三角形ABC放回起始位置,再沿Y轴向下平移1个单位,你能写出平移后的三角形三个顶点的坐标吗?如果是2个单位呢?请你把上面的结果填写在下表中,并且把点A、B、C移动后三点的坐标与原来位置上的坐标进行比较,你发现了什么?用语言描述出来.平移情况向右移向左移向上移向下移1个单位2个单位1.5个单位3个单位1个单位2个单位1个单位2个单位平移后ABO归纳:设点P 的坐标是(x,y),把点P 向右移动a个单位得到,则点P和点的坐标
30、关系是_,向右改为向左,向上,向下呢?2 轴反射公式(1)把三角形ABC放回起始位置,然后将三角形ABC沿x轴翻折,得三角形BC,写出点坐标,点A与点叫关于x轴对称。关于x对称的点点坐标有什么关系呢?(2)把三角形ABC放到起始位置,再沿y轴翻折,得三角形C,写出点,的坐标,点与点A,点B与点叫作关于y轴对称,关于y轴对称的点坐标有什么关系呢?归纳:如果点P(X,Y)关于x轴对称的点,则P和点的坐标有什么关系?关于y轴对称呢?3 用方位角加距离表示物体位置。(1)如图(比例尺为:1:1000,每个小方格的边长是1米),点O是我方舰艇的位置,发现发现A、D、F出有各有一艘敌方舰艇,怎样向总部报告
31、敌方舰艇的位置呢?学生交流,教师归纳用方位角加距离来表示点的位置A在南偏东45.3度距离O点约1414米,F在北偏东45.15度,距离点O2828米。D在北偏西26.61度,距离点O大约2236米变式:在点F出测得点O点位置是什么?归纳:用方位角加距离表示物体的位置有哪些步骤呢?(1) 确定参照物,(2)建立方位图,(3)连接参照物和目标点,(4)量出参照物与目标点的距离及方位角。三 课堂练习,巩固提高 P 24 做一做四 反思小结,拓展提高教学反思北湖实验学校七年级数学集体备课教案主备人邓小利学科数学主备时间2012.12总 课时课题1.4平面直角坐标系 巩固练习第 教时教学目标重点第二次备课难点教学
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100