ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:1.27MB ,
资源ID:6708999      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6708999.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(安徽省亳州蒙城县联考2022-2023学年数学九上期末学业水平测试模拟试题含解析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽省亳州蒙城县联考2022-2023学年数学九上期末学业水平测试模拟试题含解析.doc

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,AB是O的直径,弦CDAB,CAB25,则BOD等于()A70B65C50D452从,0,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD3若,则的值为()A1BCD4下列图形中,绕某个点旋转72度后能与自身重合的是()ABCD5如图,将绕点A按顺时针方向旋转一定角度得

2、到,点B的对应点D恰好落在边上.若,则的长为( )A0.5B1.5CD16如图,O中,弦AB与CD交于点M,A=45,AMD=75,则B的度数是( )A15B25C30D757在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道若小明首先抽签,则小明抽到1号跑道的概率是( )ABCD8方程的解是( )ABC或D或9关于的二次方程的一个根是0,则a的值是( )A1B-1C1或-1D0.510如图,AB是O的直径,弦CDAB于点E,若AB=8,AE=1,则弦CD的长是( )AB2C6D8二、填空题(每小题3分,共24分)11如图,

3、边长为的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心点所经过的路径长为_12如图,ABC中,C=90,D为AC上一点,BDC=45,CD=6,则AB=_13如图,直线,等腰直角三角形的三个顶点分别在,上,90,交于点,已知与的距离为2,与的距离为3,则的长为_14如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF如图1,当CDAC时,tan1;如图2,当CDAC时,tan2;如图3,当CDAC时,tan3;依此类推,当CDAC(n为正整数)时,tann_15如图,四边形ABCD是菱形,O经过点A、C、D,与BC

4、相交于点E,连接AC、AE.若D70,则EAC的度数为_.16某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有_条鱼.17已知二次函数yx2+2x+m的部分图象如图所示,则关于x的一元二次方程x2+2x+m0的解为_18已知两个相似三角形的相似比为25,其中较小的三角形面积是,那么另一个三角形的面积为 三、解答题(共66分)19(10分)(发现)在解一元二次方程的时候,发现有一类形如x2+(m+n)x+mn0的方程,其常数项是两个因数的积,而它的一次项系数恰

5、好是这两个因数的和,则我们可以把它转化成x2+(m+n)x+mn(m+x)(m+n)0(探索)解方程:x2+5x+60:x2+5x+6x2+(2+3)x+23(x+2)(x+3),原方程可转化为(x+2)(x+3)0,即x+20或x+30,进而可求解(归纳)若x2+px+q(x+m)(x+n),则p q ;(应用)(1)运用上述方法解方程x2+6x+80;(2)结合上述材料,并根据“两数相乘,同号得正,异号得负“,求出一元二次不等式x22x30的解20(6分)解一元二次方程:(1) (2)21(6分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转如果这三种可

6、能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果22(8分)解方程(1)1

7、x16x10;(1)1y(y+1)y123(8分)问题呈现:如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中 CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BECD,则ABE=CPB,连接AE,那么CPB 就变换到 RtABE 中问题解决:(1)直接写出图 1 中 tan CPB 的值为_;(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cos

8、 CPB 的值24(8分)定义:如果一个三角形中有两个内角,满足+290,那我们称这个三角形为“近直角三角形”(1)若ABC是“近直角三角形”,B90,C50,则A 度;(2)如图1,在RtABC中,BAC90,AB3,AC1若BD是ABC的平分线,求证:BDC是“近直角三角形”;在边AC上是否存在点E(异于点D),使得BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由(3)如图2,在RtABC中,BAC90,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若BCD为“近直角三角形”,且AB5,AF3,求tanC的值25(10分)如图,一次函数的图

9、象与反比例函数()的图象相交于点和点,点在第四象限,轴,(1)求的值;(2)求的值26(10分)抛物线上部分点的横坐标,纵坐标的对应值如下表:-3-2-1010430 (1)把表格填写完整;(2)根据上表填空:抛物线与轴的交点坐标是_和_;在对称轴右侧,随增大而_;当时,则的取值范围是_;(3)请直接写出抛物线的解析式参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据垂径定理可得,然后根据圆周角定理计算BOD的度数【详解】解:弦CDAB,BOD2CAB22550故选:C【点睛】本题考查了垂径定理、圆心角定理和圆周角定理,熟悉掌握定义,灵活应用是解本题的关键2、C【解析】在 这5个数

10、中只有0、3.14和6为有理数,从这5个数中随机抽取一个数,抽到有理数的概率是故选C3、D【解析】,=,故选D4、B【解析】根据旋转的定义即可得出答案.【详解】解:A旋转90后能与自身重合,不合题意;B旋转72后能与自身重合,符合题意;C旋转60后能与自身重合,不合题意;D旋转45后能与自身重合,不合题意;故选B【点睛】本题考查的是旋转:如果某一个图形围绕某一点旋转一定的角度(小于360)后能与原图形重合,那么这个图形就叫做旋转对称图形5、D【解析】利用B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答

11、案.【详解】AC=,B=60,sinB=,即,tan60=,即,BC=2,AB=1,绕点A按顺时针方向旋转一定角度得到,AB=AD,B=60,ADB是等边三角形,BD=AB=1,CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出ABD是等边三角形是解题的关键6、C【分析】由三角形外角定理求得C的度数,再由圆周角定理可求B的度数【详解】A=45,AMD=75,C=AMD-A=75-45=30,B=C=30,故选C7、B【详解】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是故选B【点睛】本题考查概

12、率8、C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:,x1=0或x2=0,解得:或.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.9、B【分析】把代入可得,根据一元二次方程的定义可得,从而可求出的值【详解】把代入,得:,解得:,是关于x的一元二次方程,即,的值是,故选:B【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10、B【解析】根据垂径定理,构造直角三角形,连接OC,在RTOCE中应用勾股定理即可【详解】试题解析

13、:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD= =,CD=2CE=2,故选B二、填空题(每小题3分,共24分)11、【分析】首先求得从B到B时,圆心O的运动路线与点F运动的路线相同,即是的长,又由正六边形的内角为120,求得所对的圆心角为60,根据弧长公式计算即可.【详解】解:正六边形的内角为120,BAF=120,FAF=60, 正六边形在桌子上滚动(没有滑动)一周,则它的中心O点所经过的路径长为:故答案为:【点睛】本题考查的是正六边形的性质及正六边形中心的运动轨迹长,找到其运动轨迹是解决本题的关键12、1【分析】根据题意由已知得BDC为等腰直角三角形,所以CD=BC=6,又

14、因为已知A的正弦值,即可求出AB的长【详解】解:C=90,BDC=45,BC=CD=6,又sinA=,AB=6=1故答案为:1【点睛】本题考查解直角三角形问题,直角三角形知识的牢固掌握和三角函数的灵活运用13、【分析】作AF,BE,证明ACFCBE,求出CE,根据勾股定理求出BC、AC,作DH,根据DHAF证明CDHCAF,求出CD,再根据勾股定理求出BD.【详解】如图,作AF,BE,则AFC=BEC=90,由题意得BE=3,AF=2+3=5,是等腰直角三角形,90,AC=BC,BCE+ACF=90,BCE+CBE=90,ACF=CBE,ACFCBE,CE=AF=5,CF=BE=3,,作DH,

15、DHAFCDHCAF, ,CD=,BD=,故答案为:.【点睛】此题考查等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线间的距离处处相等的性质,正确引出辅助线解决问题是解题的关键.14、【分析】探究规律,利用规律解决问题即可【详解】观察可知,正切值的分子是3,5,7,9,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;,2n+1,中的中间一个当,将故答案为:【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型15、【分析】根据菱形的性质求ACD的度数,根据圆内接四边形的性质求AEC的度数,由

16、三角形的内角和求解【详解】解:四边形ABCD是菱形,ADBC,AD=DC,DAC=ACB, DAC=DCAD=70,DAC= ,ACB=55,四边形ABCD是O的内接四边形,AEC+D=180,AEC=180-70=110,EAC=180-AEC-ACB=180-55-110=15,EAC=15.故答案为:15【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键16、1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一具体解答过程:第二次捞

17、出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:先从鱼塘中捞出后作完记号又放回水中的鱼有100条该鱼塘里总条数约为:(条)试题点评:17、x11或x21【分析】由二次函数yx2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程x2+2x+m0的解【详解】解:依题意得二次函数yx2+2x+m的对称轴为x1,与x轴的一个交点为(1,0),抛物线与x轴的另一个交点横坐标为1(11)1,交点坐标为(1,0)当x1或x1时,函数值y0,

18、即x2+2x+m0,关于x的一元二次方程x2+2x+m0的解为x11或x21故答案为:x11或x21【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率18、25【解析】试题解析:两个相似三角形的相似比为2:5,面积的比是4:25,小三角形的面积为4,大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.三、解答题(共66分)19、归纳:m+n,m;应用(1):x12,x24;(2)x3或x1【分析】归纳:根据题意给出的方法即可求出答案应用:(1)根据题意给出的方法即可求出答

19、案;(2)根据题意给出的方法即可求出答案;【详解】解:归纳:故答案为:m+n,m;应用:(1)x2+6x+80,(x+2)(x+4)0x+20,x+40x12,x24;(2)x22x30(x3)(x+1)0或解得:x3或x1【点睛】本题考查了一元二次方程,一元二次不等式的解及题目所给信息的总结归纳能力20、(1);(2)【分析】(1)利用直接开方法求解;(2),故用因式分解法解方程;【详解】(1)(2)【点睛】本题考查一元二次方程的解法,根据每题情况不一样选择合适的方法是解题的关键。21、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步

20、完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可试题解析:题1:画树状图得:一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:题2:列表得:锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出

21、一把钥匙开任意一把锁,一次打开锁的2种,则P=问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)考点:随机事件22、(1),;(1)y11,y1.【分析】(1)根据配方法即可求出答案;(1)根据因式分解法即可求出答案;【详解】解:(1)1x16x10,x13x,(x)1,x,解得:,;(1)1y(y+1)y1,1y(y+1)y10,(y+1)(1y

22、1)0,y+10或1y10,解得:y11,y1.【点睛】本题考查解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,本题属于基础题型23、(1)2;(2)【分析】(1)根据平行四边形的判定及平行线的性质得到CPB=ABE,利用勾股定理求出AE,BE,AB,证明ABE是直角三角形,AEB=90,即可求出tan CPB= tan ABE;(2)如图2中,取格点D,连接CD,DM通过平行四边形及平行线的性质得到CPB=MCD,利用勾股定理的逆定理证明CDM是直角三角形,且CDM=90,即可得到cosCPB=cosMCD【详解】解:(1)连接格点 B、 E,BCDE,BC=DE,四边形BCDE是平

23、行四边形,DCBE,CPB=ABE,AE=,BE=,AB= ,ABE是直角三角形,AEB=90,tanCPB= tanABE=,故答案为:2;(2)如图2所示,取格点M,连接CM,DM,CBAM,CB=AM,四边形ABCM是平行四边形,CMAB,CPB=MCD,CM=,CD=,MD=,CDM是直角三角形,且CDM=90,cosCPB=cosMCD=【点睛】本题考查三角形综合题、平行线的性质、勾股定理及勾股定理逆定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题24、(1)20;(2)见解析;存在,CE;(3)tanC的值为或【分析】(1)B

24、不可能是或,当A时,C50,+290,不成立;故A,C,+290,则20;(2)如图1,设ABDDBC,C,则+290,故BDC是“近直角三角形”;ABEC,则ABCAEB,即,即,解得:AE=,即可求解.(3)如图2所示,当ABDDBC时,设BHx,则HE5x,则AH2AE2HE2AB2HB2,即52x262(5x)2,解得:x,即可求解;如图3所示,当ABDC时,AFEFAGGE23,则DE2k,则AG3kR(圆的半径)BG,点H是BE的中点,则GHDEk,在BGH中,BH2k,在ABH中,AB5,BH2k,AHAG+HG1k,由勾股定理得:258k2+16k2,解得:k,即可求解.【详解

25、】解:(1)B不可能是或,当A时,C50,+290,不成立;故A,C,+290,则20,故答案为20;(2)如图1,设ABDDBC,C,则+290,故BDC是“近直角三角形”;存在,理由:在边AC上是否存在点E(异于点D),使得BCE是“近直角三角形”,AB3,AC1,则BC5,则ABEC,则ABCAEB,即,即,解得:AE,则CE1;(3)如图2所示,当ABDDBC时,则AEBF,则AFFE3,则AE6,ABBE5,过点A作AHBC于点H,设BHx,则HE5x,则AH2AE2HE2AB2HB2,即52x262(5x)2,解得:x;cosABEcos2,则tan2,则tan;如图3所示,当AB

26、DC时,过点A作AHBE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),AEBDAE+C+ABC,故AEAB5,则EFAEAF532,DEBC,AHBC,EDAH,则AFEFAGGE23,则DE2k,则AG3kR(圆的半径)BG,点H是BE的中点,则GHDEk,在BGH中,BH2k,在ABH中,AB5,BH2k,AHAG+HG1k,由勾股定理得:258k2+16k2,解得:k;在ABD中,AB5,BD6k,则cosABDcoscosC,则tanC;综上,tanC的值为或【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质,三角函数值等知识. 属于圆的综合题,

27、解决本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.25、(1)2;(2)【分析】(1)根据点在一次函数的图象上,即可得到,进而得到k的值;(2)设交轴于点,交轴于点,得,易证,进而即可得到答案【详解】(1)依题意得:,在的图象上,;(2)设交轴于点,交轴于点,在中,令得,E(0,-2),【点睛】本题主要考查一次函数和反比例函数以及相似三角形的综合,掌握相似三角形的判定和性质定理,是解题的关键26、(1)2;(2)抛物线与轴的交点坐标是和;随增大而减小;的取值范围是;(2)【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,

28、则x=0和x=-2时,y的值相等,都为2;(2)利用表中y=0时x的值可得到抛物线与x轴的交点坐标;设交点式y=a(x+2)(x-1),再把(0,2)代入求出a得到抛物线解析式为y=-x2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y的取值范围;(2)由(2)得抛物线解析式【详解】解:(1)x=-2,y=0;x=1,y=0,抛物线的对称轴为直线x=-1,x=0和x=-2时,y=2;故答案是:2;(2)x=-2,y=0;x=1,y=0,抛物线与x轴的交点坐标是(-2,0)

29、和(1,0);故答案是:(-2,0)和(1,0);设抛物线解析式为y=a(x+2)(x-1),把(0,2)代入得2=-2a,解得a=-1,抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,抛物线的顶点坐标为(-1,1),抛物线开口向下,在对称轴右侧,y随x增大而减小;故答案是:减小;当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,当-2x2时,则y的取值范围是-5y1故答案是:-5y1;(2)由(2)得抛物线解析式为y=-x2-2x+2,故答案是:y=-x2-2x+2【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点问题转化为关于x的一元二次方程的问题也考查了二次函数的性质

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服