ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:146KB ,
资源ID:6659292      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6659292.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(平行四边形的判定(1)-(2).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

平行四边形的判定(1)-(2).doc

1、181.2平行四边形的判定第1课时平行四边形的判定(1)1掌握平行四边形的判定定理;(重点)2综合运用平行四边形的性质与判定解决问题(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1两组对边分别平行且相等;2两组对角分别相等;3两条对角线互相平分那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定那么是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形 如图,在ABC中,分别以AB、AC、BC为边在BC的同侧作等边ABD、等边A

2、CE、等边BCF.试说明四边形DAEF是平行四边形解析:根据题意,利用全等可证明ADFE,DFAE,从而可判断四边形DAEF为平行四边形解:ABD和FBC都是等边三角形,DBFFBAABCABF60,DBFABC.又BDBA,BFBC,ABCDBF(SAS),ACDFAE.同理可证ABCEFC,ABEFAD,四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形)方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决探究点二:两组对角分别相等的四边形是平行四边形 如图,在四边形ABCD中,ABDC,B55,185,240.(1)求D的度数;(2

3、)求证:四边形ABCD是平行四边形解析:(1)可根据三角形的内角和为180得出D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明(1)解:D21180,D18021180408555;(2)证明:ABDC,2CAB40,DCBB180,DAB1CAB125,DCB180B125,DABDCB.又DB55,四边形ABCD是平行四边形方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路探究点三:对角线相互平分的四边形是平行四边形 如图,AB、CD相交于点O,ACDB,AOBO,E、F分别是OC、OD的中点求证:(1)AOCBOD;(2)四边形AFBE是平行四边形

4、解析:(1)利用已知条件和全等三角形的判定方法即可证明AOCBOD;(2)此题已知AOBO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OEOF即可证明:(1)ACBD,CD.在AOC和BOD中,AOCBOD(AAS);(2)AOCBOD,CODO.E、F分别是OC、OD的中点,OFOD,OEOC,EOFO.又AOBO,四边形AFBE是平行四边形方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法探究点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等 如图,在平行四边形

5、ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段DE,BF的位置关系和数量关系,并说明你的结论解析:根据平行四边形的性质“对角线互相平分”得出OAOC,OBOD.利用中点的意义得出OEOF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而得出DEBF,DEBF.解:DEBF,DEBF.四边形ABCD是平行四边形,OAOC,OBOD.E,F分别是OA,OC的中点,OEOF,四边形BFDE是平行四边形,DEBF,DEBF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法【类型二】 平行四边形的判定定理(1)的

6、综合运用 如图,已知四边形ABCD是平行四边形,BEAC于点E,DFAC于点F.(1)求证:ABECDF;(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明解析:(1)根据“AAS”可证出ABECDF;(2)首先根据ABECDF得出AEFC,BEDF.再利用已知得出ADECBF,进而得出DEBF,即可得出四边形BFDE是平行四边形(1)证明:四边形ABCD是平行四边形,ABCD,ABCD,BACDCA.BEAC于E,DFAC于F,AEBDFC90.在ABE和CDF中,ABECDF(AAS);(2)解:四边形BFDE是平行四边形理由如下:ABECDF,AEFC,B

7、EDF.四边形ABCD是平行四边形,ADCB,ADCB,DACBCA.在ADE和CBF中,ADECBF(SAS),DEBF,四边形BFDE是平行四边形方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形三、板书设计1平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形2平行四边形的判定定理(1)的应用在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服