ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:15.99KB ,
资源ID:6593015      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6593015.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【asd****19】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【asd****19】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(学习微积分的感想(2).docx)为本站上传会员【asd****19】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

学习微积分的感想(2).docx

1、学习微积分的感想 既然叫心得,就先从老师的教学感受说起吧,刘老师喜欢讲课外的故事,我很喜欢这种提神的插曲还能了解专业和学校以及数学方面的知识,刘老师与高中不同之处或是说讲课目的差别,就在于讲课的实质性,不像原来我们只是学方法和题型,不需要在常规题型上问为什么,这节约了复习时间,但现在终于知道好多原来不解的原因,比如,高中定义e为计算机常数,而如今却从极限的角度来定义,还有正态分布,高中只是略过一遍,现在看来,自然界以正态分布居多和许多的统计,函数等,着实扩充了自己的知识层面,自己没有数学系中同学的天分,但在数学思想上还是喜欢学习的,技不如人也好 ,几个月的微积分还是有些感悟的。 从极限学起,似

2、乎还是远来的知识,加上导函数应用,但还是不同,第一次作业中有一道题 让我不会只相信那答案了。 1.收敛数列a与发散数列b之和a+b必为发散数列,正确答案是命题正确,可是参考答案是 错,我还纠结找例子推反,最后还是错了,还有一题是 2.设f(x)在xa处可导,求h0时,f(a+3h)-f(a-h)h 本题按照分子加上再减去一项f(a)即可得到答案,可是盲目相信答案,没有坚持自己的答案,太依赖这种保守性的更正反而不如没有更正来的好些,正如曾经有个老师说的,看答 案看久了,考试只能是一片空白。 极限一节和洛必达法则应用在微积分的课程中是很重要的,比如求xx在x0时的极限,原来是做不的,但定积分时这类

3、题很多,洛必达法则的应用就使问题迎刃而解了,稍加变化成分数形式就解出了。无穷小量的提出为尔后的微分奠定了基础,也是求极限比大小的一种手段,同时也为等价替换这一技巧留下余地,夹挤原理也解决了不能计算的一些题,如一定 物理定理的基础证明 1.x0时sinxx极限为1,物理学家在研究单摆原理继而引申到简谐震动时,小角或是小位移关系是大量统计的出sinxx的结论,从而得出公式,而单位圆法夹挤原理应用利用, x0时cosx1.再求解, 明题中作用很大,构造函数也很重要如 1. 求证x1时,e的x次方大于x.e,构造f(x)exex.求导即可, 2. 已知函数f(x)在0x1上连续,在(0,1)内可导,且

4、f(1)0.求证在(0,1)内 至少有一点a使af(a)f(a)0 注意到这个式子导数于变量乘积,于是构造f(x)xf(x).又f(1)f(0)0. 则必有f(c)0即求导后可证。 高阶导数的计算是个技巧,尤其在参数函数和隐函数结合上,对于一般的高阶可以结合洛必达法则,参数函数与隐函数则复杂些,这也引出了对数求导法,很好用,但也有限制他,那些复杂多因式可以很好解决,特别指出二阶求导的应用,对于函数单调性与极值和凹凸性的运用其很大作用,记得高中常有题目一阶导数是解不出函数在某个范围内的单调性的,借助二阶导数研究导数本身才能得出答案,与此不得不提的泰勒公式,给人很大的数学冲击,解决所有函数式的差量与具体让人可以想更多的统计与得出规律性结论,看懂还是不容易的,毕竟我们都远比上那个天才,最优化问题很实用,自然可以产生一定的经济效益,修路打药甚至是公司的前景应用都很重要,在最小值计算中导数有时和多项均值定理有异曲同工之效,但项数改变运用均值定理一般要比导数简单积 分是在最近我发现大家普遍头疼的一章,不管是哪个学校的同学都发表说忙于计算积分掌握技巧包括我在内,的确是考验勤奋度与思维灵活度的一章知识,我决定必要的公式一定要记这样就不必做一道翻一下书了, 第4页 共4页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服