1、九年级上学期期末数学试卷一、选择题1、在ABC所在的平面内存在一点P,它到A、B、C三点的距离都相等,那么点P一定是 ( ) A、ABC三边中垂线的交点 B、ABC三边上高线的交点 C、ABC三内角平分线的交点 D、ABC一条中位线的中点2如右图在平行四边形ABCD中,B110,延长AD至F,延长CD至E,连结EF,则EF( )A、110 B、30 C、50 D、703、如图1,CD是斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于( )A、25 B、30 C、45 D、603二次三项式配方的结果是( )A B C D4小明从上面观察下图所示的两个物体,看到的是( )正
2、面 A B C D5人离窗子越远,向外眺望时此人的盲区是( )A变小 B变大 C不变 D以上都有可能6函数的图象经过(1,-1),则函数的图象是( ) 2222-2-2-2-2OOOOyyyyxxxxABCD7、下列命题正确的是【 】A对角线相等的四边形是矩形B对角线互相平分的四边形是平行四边形C对角线互相垂直的四边形是菱形D对角线互相垂直且相等的四边形是正方形8在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A小明的影子比小强的影子长 B.小明的影长比小强的影子短C.小明的影子和小强的影子一样长 D.无法判断谁的影子长9. 已知点A( -2 ,y1 ) , ( -1 ,
3、y2 ) , ( 3 ,y3 )都在反比例函数的图象上,则 【 】A. y1y2y3 B. y3y2y1 C. y3 y1y2 D. y2y1y310、用三张扑克牌:黑桃2,黑桃5,黑桃7, 可以排成不同的三位数的个数为 ( )A. 1个 B. 2个 C. 7个 D. 以上答案都不对11、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 ( )A、3.2米 B、4.8米 C、5.2米 D、5.6米12、已知,ab且a0,b0,ab0,则函数y=axb与在同一坐标系中的图象不可能( )AA B C D13、若c(c0)为关于x的一元二次方程x
4、2+bx+c=0的根,则c+b的值为( )图1m1m30m20m A1 B-1 C2 D-214、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )(A) 600m2(B) 551m2 (C) 550 m 2(D) 500m215. 已知正比例函数与反比例函数的图象有一个交点的坐标为 ( -2, -1 ), 则它们的另一个交点的坐标是 ( ) A. ( 2 ,1 ) B. ( -2 , -1 ) C. ( -2 , 1 ) D. ( 2 , -1 )16.在盒子里放有三张分别写有整式、的卡片,从中随机抽取两张卡片,把两张卡片
5、上的整式分别作为分子和分母,则能组成分式的概率是( )A. B. C. D. 17某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。从而估计该地区有黄羊( )A200只 B400只 C800只 D1000只二、填空题1、已知关于x的一元二次方程(a1)x2x + a21=0的一个根是0,那么a的值为 .2、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面分别刻有1到6的点数,点数之和为12的概率是_.3在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线长为 cm4菱形的两条对角线
6、的长的比是2 : 3 ,面积是,则它的两条对角线的长分别为_5某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是 6、反比例函数的图象的两个分支分别别位于第二、四象限,则m的取值范围是_.7、请你添加一个条件,使ABCD成为一个矩形,你添加的条件是_ 8在ABC中,点D、E、F分别是AB、BC、CA的中点,已知ABC的面积是20,则DEF的面积是_9顺次连接四边形ABCD的各边中点E、F、G、H,请你添加一个条件,使四边形EFGH成为一个菱形,这个条件是_ 10从-1,1,2三个数中任取一个,作为一次函数y=k+3的k值,则所得一次函
7、数中随的增大而增大的概率是 。11已知函数是反比例函数,则m的值为 12若反比例函数的图象经过点(3,4),则此函数在每一个象限内 随的增大而 13依次连接矩形各边中点所得到的四边形是 ADBCE14如图,在ABC中,BC = 8 cm,AB的垂直平分线交AB于点,交边AC于点E,BCE的周长等于18 cm,则AC的长等于 cm三、解答题1解方程:(1) (2) (x-1)2=(2x+3)2(因式分解法)(3)3x2-2x-3=0(用配方法) (4)2x2-4x-1=0(用公式法) 2三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示。试确定路灯灯炮的位置,再作出甲的影子。(不写作法,
8、保留作图痕迹)3甲楼在乙楼的南面,它们的高AB=CD=20米 ,该地区冬天的阳光与水平面的夹角为300。(1)若两楼相距20米,则甲楼的影子落在乙楼上有多高? (2)要使加甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米?300ABCD甲乙4“一方有难,八方支援”今年11月2日,鄂嘉出现洪涝灾害,牵动着全县人民的心,医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援鄂嘉防汛救灾工作 (1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果 (2)求恰好选中医生甲和护士A的概率5某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出50
9、0千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价0.5元,日销售量将减少10千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?6 如图,一次函数的图像与反比例函数的图像交于、两点。(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使反比例函数的值大于一次函数的值的的取值范围。yM(2,m)N(-1,-4)xO(3)连接OM、ON,求三角形OMN的面积。7如图,将ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F。(1)求证:ABFECF(2)若AFC=2D,连接AC、BE,求证:四边形ABEC是矩形。8如图,A
10、BC中ABC=90。,BAC=60。,D为AC的中点,以BD为折痕将BCD折叠,使得点C到达C/的位置,连接AC/求证:四边形ABDC/是菱形9阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是,由题意得方程组:,消去y化简得:,49480,x1= ,x2= 满足要求的矩形B存在(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?第 7 页 共 7 页
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100