ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:352.80KB ,
资源ID:6544957      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6544957.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高二数学圆锥曲线复习师.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学圆锥曲线复习师.doc

1、前置作业(圆锥曲线)一、【知识梳理】1.椭圆、双曲线和抛物线的标准方程与几何性质:椭 圆双 曲 线焦点在x轴上焦点在y轴上焦点在x轴上焦点在y轴上定 义标准方程a、b、c关系准线方程渐近线方程离心率抛物线焦点在x轴正半轴上焦点在x轴负半轴上焦点在y轴正半轴上焦点在y轴负半轴上定 义标准方程焦点坐标准线方程离心率2.圆锥曲线的共同性质:_.二、【自主检测】1.抛物线的焦点坐标是_. ()2.“”是“方程”表示焦点在y轴上的椭圆”的 条件充要条件 3.抛物线的顶点在原点,焦点在y轴上,其上的点到焦点的距离为5,则m = . 4.已知是椭圆上的一点,若到椭圆右准线的距离是,则点到左焦点的距离是_.

2、5.双曲线 的两个焦点为F、F,P为双曲线上一点,FPF=90,则FPF的面积为 _. 36.已知椭圆(0)的左焦点为,右顶点为,上顶点为,且,称其为“优美椭圆”,则“优美椭圆”的离心率为 _7.设是等腰三角形,则以为焦点且过点的双曲线的离心率为 . 8.抛物线的焦点为F,定点,在抛物线上找一点M,使最小,则M点的坐标是 . 高二数学期末复习学案(圆锥曲线)【例题分析】例1:已知椭圆的右焦点与抛物线的焦点重合,且经过点 (1)求此椭圆的方程; (2)求以此椭圆的焦点为顶点、顶点为焦点的双曲线的方程解由条件得所求的椭圆的方程为;由条件得,双曲线的半焦距,实半轴长,所以,又因为此双曲线的焦点在轴上

3、,中心在原点,所以双曲线的方程为例2:椭圆与直线交于、两点,且,其中为坐标原点.(1)求的值;(2)若椭圆的离心率满足,求椭圆长轴的取值范围.解:设,由OP OQ x 1 x 2 + y 1 y 2 = 0 又将,代入化简得 . (2) 又由(1)知,长轴 2a .例3:已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切。 (1)求椭圆的方程; (2)设椭圆 的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;解:(1)由得,又由直线与圆相切,得,椭圆的方程为:。-4分(2)由得动点的轨迹是以为准线,为焦点的

4、抛物线,点的轨迹的方程为。-8分例4:已知圆C的方程为 (圆心为C),定点,过点A的动圆P与圆C相切,记动圆的圆心P的轨迹为E.(1) 求轨迹E的方程;(2) 是否存在经过圆C的圆心的直线使得点A关于的对称点在轨迹E上.若存在,求出直线的方程;若不存在,请说明理由.解:(1)由,点A在圆C内,故内切.设动圆半径为,.点P的轨迹是以为焦点的椭圆.其方程为:. (2) 当的斜率不存在时,.点A关于直线的对称点为,不在椭圆上.当的斜率存在时,设.的中点在上.,解之得. 12分点在椭圆上,.存在直线.满足题意. 课 后 作 业 班级 姓名 学号 1已知椭圆的焦点,P是椭圆上一点,且的等差中项,则椭圆的

5、方程是_.2若椭圆的焦距为2,则 3或53已知是椭圆上的动点,是线段上的点,且满足,则动点的轨迹方程是_.4椭圆上的点到直线的最大距离是 答案:5已知F是椭圆的左焦点,P是此椭圆上的动点,A(1,1)是一定点(1)求|PA|PF|的最小值,并求点P的坐标;(2)求|PA|PF|的最大值和最小值解:椭圆方程为1,a3,b,c2,所以e,2a6.(1)如图(左)所示,过点P向椭圆的左准线作垂线,垂足为Q,则由椭圆的定义知,所以|PQ|PF|.从而|PA|PF|PA|PQ|,故当A、P、Q三点共线时,|PA|PQ|最小,最小值为1,此时P(,1)(2)如图(右)所示,设椭圆右焦点为F1,则|PF|P

6、F1|6,所以|PA|PF|PA|PF1|6,因为|AF1|PA|PF1|AF1|(当P、A、F1共线时等号成立),所以|PA|PF|6,|PA|PF|6.故|PA|PF|的最大值为6,最小值双曲线方程为1.6已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,)点M(3,m)在双曲线上(1)求双曲线方程;(2)求证:;(3)求F1MF2面积10.解:(1)e,可设双曲线方程为x2y2.过点(4,),1610,即6.双曲线方程为x2y26.(2)证明:法一:由(1)可知,双曲线中ab,c2,F1(2,0),F2(2,0),kMF1,kMF2,kMF1kMF2.点(3,m)在双曲线上,9m26,m23,故kMF1kMF21,MF1MF2.0.法二:(32,m),(23,m),(32)(32)m23m2,M点在双曲线上,9m26,即m230,0.(3)F1MF2的底|F1F2|4,由(2)知m.F1MF2的高h|m|,SF1MF26. 8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服