ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:34.41KB ,
资源ID:6527664      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6527664.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《三角形内角和定理的证明》教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《三角形内角和定理的证明》教案.doc

1、北师大版八年级下册数学6.5三角形内角和定理的证明教案教案背景:在学生掌握了平行线的性质及严格的证明等知识的基础上展开的本节课教学。教学课题:北师大八年级下册数学6.5三角形内角和定理的证明教材分析:(一)教材的地位和作用:这节内容是在前面学生对“三角形内角和是180”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依

2、据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;课本议一议引导学生一题多思,体现运动变化的观点,读一读为学生认识定理的发现过程另劈蹊径,渗透极限的思想,是学生认识客观世界、不断探求新知的一种重要途径。因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。(二)教学目标: 知识与技能目标:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证

3、能力。过程与方法目标:1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。2、通过一题多证、一题多变体会思维的多向性。3、引导学生应用运动变化的观点认识数学。情感与态度目标:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。感悟逻辑推理的价值。(三)教学重难点:本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。本节课的难点是:应用运动变化的观点认识数学。从拼图过程中发现并正确引入辅助线是本节课的关键。教学方法:引导发现法、尝试探究法。教学过程:一、创设情景、提出问题:“三角形内角和是180”一定

4、是个真命题吗?你是怎样知道的?由哪些公理、定理、定义可以得到一个角或几个角的和为180?渗透公理化的思想,自然导入三角形内角和定理证明的学习。二、探究新知(一)动手操作、探索解法:每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验。通过小组合作交流,讨论有几种拼合方法?1、开展小组竞赛(看哪个小组发现多?说理清楚。),各小组派代表展示拼图,并说出理由。学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线(学生讨论,教师点评),为书写证明过程做好铺垫。2、指导学生写出已知、

5、求证、证明过程(抽两人板演,教师点评,规范证明格式)。ABCED应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。已知:如图,ABC求证:A+B+C=180证明:作BC的延长线CD,过点C作射线CEBA CEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平行,内错角相等)BCA+ACE+ECD=180A+B+ACB=180(等量代换)(二)议一议、开阔思野: 搬三个角的特点:把角搬到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。在证明三角

6、形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。ABCDE已知:如图,ABC求证:A+B+C=180证明:过A点作DEBC DEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180BAC+B+C=180(等量代换)那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。让学生讲解自己的思维过程和解法。(三)例题解析,强化重点:已知:如图, ABCD。求证:ABE+BED+EDC=360(用两种方法证明)。ABABA BE F E ECDCDCD (四)应用知识,深化主题:学习了以

7、上定理,我们来看看特殊三角形内角和有什么特殊的地方?问题:“直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论。”三、反馈练习:(1)ABC中,C=90,A=30,B=?(2)A=50,B=C,则ABC中B=?(3)三角形中三角之比为123,则三个角各为多少度?(4)课本239页随堂练习2,四、回顾小结,课堂延伸:“这节课你学到了哪些知识?你有什么收获?” 五、作业布置:课本241页:数学理解1、2、3教学反思 : 在教学中采用小组讨论、小组竞赛、板演等形式,充分调动学生的主动性、积极性。特别是由拼图得出“三角形内角和是180”的结论的过程中,教师鼓励学生尝试用多种方法来证明这个结论,开展小组竞赛,让学生积极思考,大胆发言,营造生动有趣、活泼和谐的课堂气氛。课堂教学充分发挥课件辅助教学的作用,将知识形象化、生动化、具体化。重视数学思想方法的引导,并及时指导归纳总结。尊重学生的个体差异,鼓励学生合作交流,激发学生学习数学的兴趣。重视培养学生观察问题、发现问题、思考问题、归纳问题的能力和一题多解,一题多法的创新能力,使不同程度的学生都有不同的收获和发展。为了突出重点、突破难点,我对教材做了少量的补充和扩展,利用多媒体直观形象、节省时间的特点,动画演示再现学生拼图过程、解题过程,引导学生从动态角度直观地思考问题,帮助学生理解运动变化的观点。5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服