ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:103.50KB ,
资源ID:6516975      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6516975.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(学练优2016年人教版七年级数学上册导学案全册1.2.1 有理数.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

学练优2016年人教版七年级数学上册导学案全册1.2.1 有理数.doc

1、第一章 有理数1.2 有理数1.2.1 有理数 教学目标 1. 正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2. 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3. 体验分类是数学上的常用的处理问题的方法.教学重点与难点重点:正确理解有理数的概念.难点:正确理解分类的标准和按照定的标准进行分类.一.知识回顾和理解 通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)每名学生都参照前一名学生所写的,尽量写不同类型的,最后有下面同学补充.在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后

2、面分类是在解决。问题1:我们将这三为同学所写的数做一下分类.(如果不全,可以补充).问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?二.明确概念 探究分类x k b 1 . c o m 正整数、0、负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数x k b 1 . c o m问题3:上面的分类标准是什么?我们还可以按其它标准分类吗?教师可以按整数和分数的分类标准画出结构图,而问题3中的分类图可启发学生写出.三.练一练 熟能生巧1.任意写出三个数,标出每个数的所属类型,同桌互相验证.2.把下列各数填入它所属于的集合的圈内:15,-,-5,0.1,-5.32,-80,1

3、23,2.333.在练习2中,首先要解释集合的含义.练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)正整数集合 负整数集合正分数集合 负分数集合x k b 1 . c o m小结到现在为止我们学过的数是有理数(圆周率除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.作业必做题:教科书第8页练习.P14 T1、2作业2.把下列给数填在相应的大括号里:这里可以提到无限不循环小数的问题.并特殊指明我们以前所见到的数中,只有是一个特殊数,它不是有理数.但3.14是有理数.-4,0.001,0,-1.7,15,.x k b 1正数集合 ,负数集合 ,正整数集合 ,分数集合 备选题1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数? 作业2意在使学生熟悉集合的另一种表示形式.+7,-5, ,79,0,0.67,+5.12.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?利用此题明确自然数的范围.0是自然数.这点可以在前面的教学中出现.3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数.3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗? 正数集合 整数集合系列资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服