ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:130.50KB ,
资源ID:6516169      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6516169.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(广东省茂名市愉园中学八年级数学下册《4.6-探索三角形相似的条件(二)》教案-北师大版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广东省茂名市愉园中学八年级数学下册《4.6-探索三角形相似的条件(二)》教案-北师大版.doc

1、4.6 探索三角形相似的条件(二)教案课题课型新授课课时1三维目标知识与技能1.掌握三角形相似的判定方法2、3.2.会用相似三角形的判定方法2、3来判断、证明及计算.过程与方法1.通过自己动手并总结推出相似三角形的判定方法2、3,培 养学生的动手操作能力,总结概括能力.2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.情感态度与价值观1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.教学重点相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点判

2、定方法的推导及运用教学手段多媒体辅助教学教学方法探索总结运用法教学准备制作课件教学过程教学环节教师活动学生活动备注一.创设问题情境,引入新课如图,AFCD,1=2,B=D,你能找出图中几对相似三角形?并逐一说明相似的理由.请大家观察图形,运用我们学过的判定方法,讨论得出结果. 有四对相似三角形,它们是AEFDEC,AFBACD,AEBCED,AEFEBA.他们相似的理由都是用相似三角形的判定方法1.教学环节教师活动学生活动备注二.讲授新课相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类

3、比的方法,猜想只用边来判定三角形相似的方法呢?三边对应成比例的两个三角形相似.下面我们就来验证一下.1.相似三角形的判定方法2.三边对应成比例的两个三角形相似.画ABC与ABC,使、和都等于给定的值k.(1)设法比较A与A的大小、B与B的大小、C与C的大小.(2)ABC与ABC相似吗?说说你的理由.改变k值的大小,再试一试.大家可以按照上面的步骤进行,这里的k由自己定,为了节约时间,请大家一个组取一个相同的k值,不同的组取不同的k值,好吗?经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.2.相似三角形的判定方法3.前面两种判定方法我们都是只从角或只从边的

4、方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.两边对应成比例且夹角相等的两个三角形相似.画ABC与ABC,使A=A,和都等于给定的值k.设法比较 B与B的大小(或C与经过大家的亲身参与体会,得出的结论为A=A,B=B,C=CABCABC,理由是:A=A,B=B,C=C= 根据相似三角形的定义可知:ABCABC.按照要求作出的ABC与ABC中,有B=B,C=C,因此根据判定方法1可知,ABCABC.教学环节教师活动学

5、生活动备注三.课堂练习四.课时小结五、作业:C的大小)、ABC与ABC相似吗?(2)改变k值的大小,再试一试.请大家按照上面的步骤进行,同时还要采取不同的组取不同的k值法.3.想一想下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?4.做一做在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.课本随堂练习本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两

6、个三角形相似.习题4.8 1,2学生探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似. 从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.4.做一做学生总结得:第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.第二种:即判定方法1两角对应相等的两个三角形相似.第三种:即判定方法2三边对应成比例的两个三角形相似.第四种:即判定方法3两边对应成比例且夹角相等的两个三角形相似.板 书 设 计4.6 探索三角形相似的条件(二) 三角形相似的条件:第一种:定义法.:对应角相等,对应边成比例的两个三角形相似.第二种:判定方法1:两角对应相等的两个三角形相似.第三种:判定方法2:三边对应成比例的两个三角形相似.第四种:判定方法3:两边对应成比例且夹角相等的两个三角形相似.教 学 反 思反复使用修订记录说明4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服