ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:156.50KB ,
资源ID:6516126      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6516126.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《多边形的内角和与外角和》教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《多边形的内角和与外角和》教学设计.doc

1、多边形的内角和与外角和教学目标:【知识与技能】1.理解多边形的概念和正多边形的概念.2.了解多边形的内角、外角、对角线等概念.3.在熟悉和掌握多边形内角和定理的基础上,推理并掌握多边形的外角和定理.【过程与方法】经历质疑、猜想、归纳等活动,发展学生的推理能力,积累数学活动的经验,在探索中学会与人合作,学会和别人交流自己的思想和方法.【情感态度】让学生体验猜想得到证实的喜悦和成就感,在解题中感受生活中数学的存在,体验数学中充满着探索和创造.教学重点:多边形内角和定理的探索和应用.教学难点:多边形的内角和,外角和定理的推导.教学过程:一、 情境导入什么叫三角形?你能说出什么叫四边形、五边形吗?三角

2、形如何表示?四边形和五边形又是怎样表示呢?【教学说明】把学生的注意力自然的引入研究方向,为课题的研究做铺垫.二、探究新知探究1 多边形的概念三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.记作:ABC.四边形是由四条不在同一条直线上的线段首尾顺次连结组成的平面图形.记作:四边形ABCD.五边形是由五条不在同一直线上的线段首尾顺次连结组成的平面图形.记作:五边形ABCDE.一般地,由n条不在同一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形.注意:我们现在只研究多边形,如图(2),(3);图(4)也是多边形,但不是我们现在研究范围.与三角形类似,如图(5)所示,A

3、、D、C、ABC是四边形ABCD的四个内角,CBE和ABF都是与ABC相邻的外角,两者互为对顶角,称为一对外角.探究2 正多边形如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形.如:正三角形、正四边形(正方形)、正五边形等.连结多边形不相邻的两个顶点的线段叫做多边形的对角线.探究3 多边形的内角和我们知道三角形的三个内角和是180度,那么四边形、五边形、六边形的内角和是多少?由下图可以看出,从多边形的一个顶点引出的对角线把多边形划分为若干个三角形,我们已知一个三角形的内角和等于180度,这样我们就可以求出多边形的内角和.根据我们的分析,完成下表:由此,我们可以得出:【归纳结论】n边

4、形的内角和为(n-2)180.探究4 多边形对角线的条数你能根据上面的分析,总结出多边形对角线的条数吗?分析:n边形从一个顶点可以画出(n-3) 条对角线,n边形共有n个顶点,这样n边形一共可以画n(n-3)条对角线,但是每条对角线计算了两遍,所以n边形一共有n(条对角线.探究5 多边形的外角和与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和.如图(1)四边形ABCD,1、2、3、4分别是四个外角,求:1+2+3+4的度数.因为1+DAB=2+CBA=3+DCB=4+ADC=180又因为DAB+CBA+DCB+A

5、DC=360(四边形内角和等于360)所以1+2+3+4=360.所以四边形的外角和等于360.根据n边形的每一个内角与它相邻的外角互为补角,就可以求得n边形的外角和,填表:【归纳结论】任意多边形的外角和都为360.【教学说明】我们是把多边形的问题转化成三角形,再由三角形内角和为180,求出多边形内角和与外角和,从而使问题得到解决! 三、知识应用例1:过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形.这个多边形是几边形?它的内角和是多少?解:依题意, 这个多边形是七边形,它的内角和是(72) 180=900例2:如果一个多边形的内角和是1440,那么这是几边形?解:由n边形的内角和公式可得(n 2) 180 = 1440n 2 = 8n = 10这是十边形。例3:一个n边形的(n-1)个内角的和是1230,求这个n边形的边数及剩余一个内角的度数。解:设这个n边形边数为n,剩余一个内角的度数为x.则,由n边形内角和公式,可得方程:(n-2)180=1230+x0x180,n为正整数n=9,x=30答:这个n边形的边数是9,剩余一个内角的度数为30四、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五、作业1.第88页习题第1 、2、3题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服