ImageVerifierCode 换一换
格式:PDF , 页数:13 ,大小:1.77MB ,
资源ID:651209      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/651209.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(交通出行选择行为的量子决策实验研究.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

交通出行选择行为的量子决策实验研究.pdf

1、第21卷 第2期2023年06月交通运输工程与信息学报Journal of Transportation Engineering and InformationVol.21 No.2Jun.2023文章编号:1672-4747(2023)02-0029-13交通出行选择行为的量子决策实验研究交通出行选择行为的量子决策实验研究赵传林*,王钰涵,武海娟,孙阳琪,丁 力(北京建筑大学,土木与交通工程学院,北京 102616)摘要:量子决策模型是基于量子物理思想的一种新兴决策模型,近年来,在解释个体不确定状态下的决策行为方面展现出独特优势。本文基于量子决策模型研究交通出行决策行为,设计了体现干扰效应、

2、框架效应及顺序效应的调查问卷。首先,将分类-干扰量子决策实验进行改进,在实验范式中引入了交通出行因素,得到了新的干扰系数。其次,借鉴经典的Linda问题研究思路设计了四个与交通出行有关的合取谬误问题,结合数据得出了新的干扰系数和量子几何投影图像,验证了干扰对决策行为的影响。然后,在生命安全、财产损失、时间成本三个维度和积极、消极两种描述方式上使用齐当别理论,解释了框架对决策行为的影响。最后,通过变换问题顺序构建量子问题等式,并使用顺序效应散点图验证了量子问题等式的预测准确性。结果表明:量子理论对决策者不确定状态下决策行为的描述具有理论优势,量子决策模型可以解释交通出行决策行为中的干扰效应、框架

3、效应及顺序效应,拓展了量子思想理论在交通决策行为领域的应用。关键词:城市交通;量子决策模型;实验调查;交通出行;干扰效应;框架效应;顺序效应中图分类号:U491文献标志码:ADOI:10.19961/ki.1672-4747.2023.01.001Experimental study on quantum decision-making of travel choicebehaviorZHAO Chuan-lin*,WANG Yu-han,WU Hai-juan,SUN Yang-qi,DING Li(School of Civil and Transportation Engineering

4、,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)Abstract:The quantum decision model is a novel approach based on quantum physics that has dem-onstrated unique advantages in clarifying individual decision-making behavior under uncertain cir-cumstances.The objectives of

5、this study are to investigate travel choice behavior using the quantumdecision model and to design experimental questionnaires that reflect interference,framing,and or-der effects.First,the experiment introduces the categorization-decision interference,including trafficfactors and obtains a new inte

6、rference parameter.Second,four conjunctive fallacy problems relatedto travel behavior are designed based on the classical Linda problem,and new interference coeffi-cients and quantum geometric projection images are obtained.Next,the equate-to-differentiate meth-od is used in the three dimensions of

7、life safety,property loss,and time delay,and two descriptionsof positive and negative,to explain the effect of the frame on the decision-making behavior.Finally,by changing the order of the questions to construct the equation of quantum problems,the prediction收稿日期:2023-01-02录用日期:2023-02-24网络首发:2023-

8、03-07审稿日期:2023-01-0201-03;01-0801-16;02-1202-21;02-24基金项目:国家自然科学基金(71971014);北京市教委科技计划项目(KM202010016007);北京建筑大学金字塔人才培养工程项目(JDJQ20200301);北京建筑大学研究生创新项目(PG2023052)作者简介:赵传林(1987),男,博士,副教授,研究方向为交通运输规划与管理、交通行为经济学等,E-mail:引文格式:赵传林,王钰涵,武海娟,等.交通出行选择行为的量子决策实验研究J.交通运输工程与信息学报,2023,21(2):29-41.ZHAO Chuan-lin,WA

9、NG Yu-han,WU Hai-juan,et al.Experimental study on quantum decision-making of travel choice behaviorJ.Journal of Transportation Engineering and Information,2023,21(2):29-41.30交通运输工程与信息学报第21卷accuracy of the quantum equation is verified using the order effect scatter plot.The results show thatthe quant

10、um decision model has theoretical advantages in describing the superposition state of deci-sion-makers,particularly the interference,framing,and order effects.This expands the application ofthe quantum theory in travel choice behavior.Key words:urban traffic;quantum decision model;experimental inves

11、tigation;travel choice behav-ior;interference effect;framing effect;order effect0引言人类最为显著的特征就是其具备做选择、判断和决策的能力,以及在做选择、判断和决策的过程中所具有的理性思考和感性知觉1。传统决策理论以贝叶斯定理为认知基础,认为个体是完全理性的,即决策的依据总是追求个人效用或感知效用最大化2。传统决策模型中遵循的经典概率理论虽然认为个体的信念状态是随时间变化的,但在任何特定时刻,它都处于一种确定状态3。传统决策模型在决策领域取得了巨大成功,但不能很好地解释人在不确定下的某些决策行为,比如干扰效应、框架

12、效应和顺序效应。在交通出行选择决策过程中,一个人的选择可能受到家庭其他成员的影响,即干扰效应,例如,去工作上班的路径选择可能会受到送孩子上学的影响;同种选择方案的不同描述也可能会影响决策者的选择,即框架效应,例如描述为到达某个地点早到的概率为 80%,另一种描述方式为迟到的概率为20%,两种描述本质上是一样的,但可能会导致不同的选择结果;问题顺序的不同可能也会影响决策者的选择,即顺序效应,例如,问题A:路径 1的时间短但收费高,问题 B:路径 2不收费但时间长,先问问题A再问问题B,和先问问题B再问问题 A,可能会导致决策者不一样的选择。基于经典概率理论的传统决策模型很难解释以上效应,具有独特

13、理论结构的量子决策模型可以很好地解释这些传统决策理论难以解释的结果。这是本文研究的出发点,即借助于量子决策理论框架解释交通出行决策行为中的干扰效应、框架效应及顺序效应。跟本文最为相关的一类文献是关于量子认知决策的研究。Busemeyer和Bruza4综述了量子认知理论的研究进展。量子理论作为粒子物理学中微观理论与人类认知中宏观现象之间的桥梁,为决策理论的发展提供了新的思路5。量子理论系统采用了一种与经典概率框架理论有着根本性区别的方法来处理逻辑、概率、推理的过程,即量子逻辑不遵循布尔逻辑的分布公理、量子概率不遵循全概率定律等。量子思维以新的视角,为传统决策模型所面临的问题开拓了更广阔的研究视野

14、,用量子思维来审视认知和决策的过程并遵循量子概率基本规律。作为量子认知理论研究的一部分,量子决策模型的思维逻辑类似于启发式理论6,认为人类的决策是有限理性的,也与经典决策理论一样,具有严格完整的数理逻辑体系和更加新颖灵活的理论结构7-8。近年来,将量子认知理论应用到人们行为决策方面的成果逐渐丰富,相关研究验证了量子决策模型的优越性。Pothos等9将 Markov模型与量子决策模型进行了比较,发现人的决策行为会违背确定性原理这一现象能被量子决策模型更好地解释。Lipovetsky等10演示了不同的决策结果是如何由其纯状态和混合状态概率组成的,所得的数值结果支持了所建立的量子振幅模型。判断和决策

15、的情境性,在量子理论中被称为干涉,由第一次判断或决策产生的情境会干涉后续的判断或决策,由此产生秩序效应,同时语言环境和言语表达的不同也会对结果产生影响。量子决策模型的有效性多采用实验研究展开,例如:Busemeyer等11将量子理论作为一个新的概念框架和工具,通过顺序效应和干扰效应实验说明了互补性和叠加性原则的作用机制。李晖等12通过感官评价实验,验证了量子决策模型可进一步解释和预测复杂环境下动态决策的顺序效应问题。Busemeyer等13提出了一类动态量子决策模型,解释了行为决策中存在的分离效应以及干涉效应。辛潇洋等14结合齐当别思想对量子决策模型进行了优化和改进,实现了对囚徒困境博弈中由他

16、人收益差距改变而引起的分离效应变化趋势的预测。刘立秋等15应用齐当别决策模型对Linda 问题中合取谬误产生的原因进行了新的解释。近年来,已有一些研究将量子认知理论应用赵传林 等:交通出行选择行为的量子决策实验研究31第2期于交通科学的研究。Vitetta16结合量子决策模型,在路径选择问题上增加了一个干扰项,提出了一种新的路径选择模型。Yu 和 Jayakrishnan17借助于量子决策模型解释了通过 RP(Revealed Prefer-ence)行为调查与 SP(Stated Preference)意向调查所得数据结果之间的差异。Hancock等18建立了交通选择行为的量子概率模型,基于

17、真实决策数据集测试并验证了量子振幅模型和哈密顿模型的有效性。程洋等19在交通方式选择初次风险框架实验基础上增设匹配任务实验,发现以齐当别理论为基础的匹配任务实验可以有效地解释出行者的交通方式选择行为。本文聚焦交通选择行为的量子决策实验研究,齐航等20综述了采用实验经济学方法分析交通行为的相关进展,为本文研究提供了思路。综上所述,量子决策模型因其独特的理论结构,可以解释人们在非完全理性和不确定状态下的判断结果,更因其不需要遵从唯一性原则,从而可以为事件的概率分配模式提供更大的灵活性。但作为一种源于物理学的新兴决策模型,目前对其的研究大多集中于模型本身的开发和优化,与实际问题和数据结合的研究相对较

18、少,涉及的领域也十分有限,本文将要探索的不是量子物理本身,而是在交通出行选择行为分析中引入量子决策理论,通过实验的方式将量子决策模型和量子理论思想应用到交通出行领域的认知和决策中。本文基于判断和决策的情境性特点,结合交通出行场景和因素对以往量子实验进行改进,设计能够体现干扰效应、框架效应和顺序效应的相关实验,结合实验数据验证交通出行选择行为中是否存在这三类效应,并借助于量子决策理论进行解释,以期更好地理解人们的交通决策行为。接下来,本文将从量子决策模型的理论基础、实验设计以及实验结果分析三个方面进一步说明量子决策模型的有效性。1量子决策模型的理论基础1.1空间的定义研究量子决策模型首先需要确定

19、一个状态空间希尔伯特空间,可视为无限维的欧几里得空间,这一空间可以完成对所有事件的完备表述,这便使得量子决策模型不需要受到诸如全概率法则等布尔逻辑的约束21,因此能够允许那些违背全概率法则的事件存在。人们的信念-行动状态由希尔伯特空间中的向量描述,该空间由N个彼此正交的单位向量XX=Xi,i=1,N表示,这N个向量称为此空间的基矢,任意一种可能的状态都能通过这组基矢叠加表示22-23,如下所示:=1X1+2X2+NXN(1)1.2概率的定义量子决策模型允许人们在做出决定之前的每一刻都处于一种不确定的状态叠加态,这使得两个确定的状态在每个时刻都有潜在的状态振幅来表达。不确定状态的波动本质可以模拟

20、冲突、模糊、困惑和不确定性的心理体验,确定状态可以模拟冲突解决、做出决策和确定性的心理体验,因此,量子理论对决策者不确定的信念状态的描述与解释具有理论优势24。人们在决策之前往往对某件事具有一个初始状态用以描述信念与行为,空间内的任意状态都可以由一组基矢来表示,因此,初始状态可表示为:()0=1()0,2()0,N()0T(2)式中:1()0,2()0,N()0代表()0在N个基矢上的投影坐标;()t表示在t时刻的状态。在不同子空间中选项发生的概率值由投影长度与其自身的复共轭的乘积表示,由于投影结果为实数,则概率表示为:Pi=|i()t|2i=1,2,N(3)为满足归一性,有:i=1N|i()

21、t|2=1i=1,2,N(4)2实验设计及问卷情况2.1实验设计本文基于判断和决策的情境性特点,结合交通出行场景和因素对以往量子实验进行改进,设计能够体现干扰效应、框架效应和顺序效应的相关实验,即:设计干扰效应(分类-决策、合取谬误)、框架效应、顺序效应四个实验形成两份不同问卷(问卷、问卷,问卷具体内容设计详见附录链接),问卷和问卷中均包含了四个实验,主要区别体现在框架效应和顺序效应实验的不同,详见2.1.3和2.1.4实验设计部分,干扰效应(分类-决策、合取谬误)实验在两份问卷中的内容相同。通过问卷星平台(包括问卷星平台提供的官方问卷互填系统,微信等社交平台等)展开调查,获得实验数据。2.1

22、.1 分类-决策实验分类决策实验范式由Townsend等人提出,随后 Busemeyer25在该实验范式的基础上建构了量子决策模型。本文将实验改进后应用到交通出行方案的判断和选择中,流程为通过问卷问题向被试者展示9张盘山公路的图片,这些图片沿有护栏和无护栏两个维度展示。前六张,参与者被要求先将图中盘山公路做出是否安全的分类,随后进行是否会选择此路出行的决策;后三张不做分类,直接进行是否会选择此路出行的决策。此实验的路径分析如图1所示,由图片对参与者产生初始刺激,S代表分类为安全(Safety),D代表分类为危险(Danger),M 表示决定选择盘山公路(Mountain),T表示决定选择隧道(

23、Tunnel)。被试者从初始状态开始(初始状态用Z表示),可以过渡到标有S的安全状态S|Z或标有D的危险状态D|Z;从状态S开始,可以过渡到标有M的盘山公路状态M|S或标有T的隧道状态T|S;从状态D开始,也可以过渡到标有M的盘山公路状态M|D或标有T的隧道状态T|D。图1分类-决策实验的路径简图Fig.1 Path diagram of categorization-decision experiment2.1.2 合取谬误实验合取谬误指复合事件中组成部分发生的概率小于复合事件发生的概率,最典型的例子是Tversky 和 Kahneman26关于著名的 Linda 问题的研究。要求被试者基于

24、 Linda 问题的描述,对某些事件发生的可能性或者概率做出判断。最近,霍雨佳27对合取谬误的成因和消解进行了讨论,说明了合取谬误的产生与题目陈述自身没有关系。本文结合交通因素对 Linda 问题进行改进,目的是进一步验证合取谬误的存在性,可以为后续开展交通 SP 意向调查问卷的设计提供借鉴,避免合取谬误现象的产生。后续研究可进一步挖掘和分析受访者的不同属性特征对于合取谬误的实验结果的影响机制,并进行差异性分析。实验设计了四个虚拟人物(王照、张耀、刘中、贺国)并对其个人特征进行描述,以王照为例,描述如下:王照博士毕业后在本市从事医学专业工作,他关心社会公平与歧视问题,爱好听音乐会和游泳。然后要

25、求被试者对以下两个关于人物王照的事件进行概率判断:(1)王照平时会选择公共交通方式通勤;(2)王照在一线城市生活并且平时会选择公共交通方式通勤。其他三人选项设置同理。若P()2 P()1,即复合事件发生的概率大于组成部分事件发生的概率,则产生合取谬误现象。2.1.3 框架效应实验框架效应是指客观上相同问题的不同描述导致了人们不同的决策这一现象,于 1981 年由Tversky 和 Kahneman28最先提出,最经典的例子是亚洲疾病案例。本实验以不同类型的交通出行情景为决策背景,根据经典的亚洲疾病案例思路,从收益和损失的角度分别对同一事件进行描述,按照任务框架分为积极(问卷)和消极(问卷)两个

26、版本,各版本以生命安全、财产损失、时间成本 3类事件为决策情景;同时在每个情景下设置风险决策和结果匹配两个问题,最终形成12个问题。风险决策问题在设置上为 A、B 两个选项,选项A为确定方案,选项B为风险方案;结果匹配问题在设置上为C、D两个选项,选项C、D为决策问题中确定方案与风险方案的最好/最坏结果匹配。亚洲疾病案例:某国面临一种罕见的疾病预计会使600人死亡,现在有两种方案:可以救200人和有三分之一的可能救600人,三分之二的可能一个也救不了,调查结果显示大多数人更愿意选择前者,因为救人是一种收益;将同样问题换成另一种描述:会使400人死亡和有三分之一的可能无人死亡,有三分之二的可能6

27、00人全部死亡,调查结果显示人们更倾向于后者,因为死亡是一种损失。而事实上,两种描述实质内容相同。32交通运输工程与信息学报第21卷每位被试者只填写1个任务框架版本的风险决策问卷,采用2(任务框架:积极、消极)3(事件类型:生命安全、财产损失、时间成本)2(问题设置:风险决策、结果匹配)的三种因素混合设计,其中任务框架是被试者之间的变量,事件类型和问题设置是被试者自身的变量,因变量为被试者的决策行为倾向。表1表4分别展示了情景及选项设置。表1 三种事件类型情景设置Tab.1 Scenario settings of three event types事件类型生命安全财产损失时间成本情景设置假设

28、有50人团队大雨天气从甲地前往乙地勘测,有两条存在不同程度风险的路可选假设有货车装载1 000箱货物从甲地前往乙地,且由于路况较差,可能对货物有一定的损耗假设你要与家人看一场总时长为150 min的电影,现有两种交通方式可选表2 生命安全问题选项设置Tab.2 Life safety question option settings问题类型风险决策问题结果匹配问题积极框架A 选择此路径,20人将生还B 选择此路径,有40%的可能50人全部生还,有60%的可能无人生还C 最好的可能结果:20人生还与有40%的可能50人全部生还D 最坏的可能结果:20人生还与有60%的可能无人生还消极框架A 选择

29、此路径,30人将死亡B 选择此路径,有40%的可能无人死亡,有60%的可能50人全部死亡C 最好的可能结果:30人死亡与有40%的可能无人死亡D 最坏的可能结果:30人死亡与有60%的可能50人全部死亡表3 财产损失问题选项设置Tab.3 Property loss question option settings问题类型风险决策问题结果匹配问题积极框架A 选择此路径,能够确保700箱货物完好无损B 选择此路径,有70%的可能1 000箱货物都完好无损,有30%的可能没有货物完好无损C 最好的可能结果:700箱货物完好无损与有70%的可能使1 000箱货物都完好无损D 最坏的可能结果:700箱

30、货物完好无损与有30%的可能没有货物完好无损消极框架A 选择此路径,有300箱货物受损B 选择此路径,有70%的可能没有货物受损,有30%的可能1 000箱货物全部受损C 最好的可能结果:300箱货物受损与有70%的可能没有货物受损D 最坏的可能结果:300箱货物受损与有30%的可能1 000箱货物全部受损表4 时间成本问题选项设置Tab.4 Time cost question option settings问题类型风险决策问题结果匹配问题积极框架A 选择乘坐地铁:地铁运行时间相对固定且100%会迟到,可以观看130 min电影B 选择自驾出行:由于路况未知,有20%的可能不会迟到,即可以观

31、看150 min电影;有80%的可能会迟到,可以观看125 min电影C 最好的可能结果:100%可以观看130 min电影与有20%的可能可以观看150 min电影D 最坏的可能结果:100%可以观看130 min电影与有80%的可能可以观看125 min电影消极框架A 选择乘坐地铁:地铁运行时间相对固定且100%会迟到,会损失20 min电影时间B 选择自驾出行:由于路况未知,有20%的可能不会迟到,即不会损失电影时间;有80%的可能会迟到,会损失25 min电影时间C 最好的可能结果:100%会损失20 min电影时间与有20%的可能不会损失电影时间D 最坏的可能结果:100%会损失20

32、 min电影时间与有80%的可能会损失25 min电影时间2.1.4 顺序效应实验由Wang和Busemeyer29提出的量子问题等式是一种对于顺序效应的先验性预测模型,这一模型因其可以较为精确地预测顺序效应大小从而证明了量子决策模型不仅仅是一种后验性的模型30。本实验提供了一个固定情景(出行目的:购物;OD距离:9 km;出发时间:21:00)下的两种出行方案(方案A:出租车出行,用时18 min,成本25元;方赵传林 等:交通出行选择行为的量子决策实验研究33第2期案B:地铁步行(500 m)出行,用时32 min,成本8元)。在实验过程中,A、B两个方案会以不同的顺序呈现给被试者,即在问

33、卷中为AB,在问卷中为BA,被试者会被问及是否选择此种方案出行,即问卷中可能产生答案()Ay,By、()Ay,Bn、()An,By、()An,Bn;问卷中可能产生答案()By,Ay、()By,An、()Bn,Ay、()Bn,An。P()Ay,Bn表示填写问卷的被试者对 A 先回答“是”后对 B 回答“否”的概率,P()Bn,Ay表示填写问卷的被试者先对B回答“否”后对A回答“是”的概率,其他类似的表示同理。2.2问卷总体情况实验于2022年7月29日至7月30日开展,问卷采取匿名方式,每位被试者只能选取问卷、问卷中的一份进行填写。所有被试者均自愿参与此次研究且之前并无参与过类似调查,汇总后共获

34、取382份原始问卷,剔除明显无效及不完整卷后得到有效问卷 314份,占回收问卷总数的 82.2%,其中问卷156份,问卷158份。选用信度分析中的信度系数法进行检验,问卷的Cronbach salpha 系数为 0.774,问卷的 Cronbach s alpha 系数为0.796,说明两份问卷的内部一致性较好。由于顺序效应和框架效应的问题特殊性,故只选择了分类-干扰实验和合取谬误实验的问题做效度分析,抽取维度为5,结果显示相同维度的题目显示值都大于0.4,与预计结果相同,信度和效度都较好,可以进行下一步分析。表5 问卷个体特征的描述性分析Tab.5 Descriptive analysis

35、of individual characteristics of questionnaire项目性别年龄收入教育程度说 明男女18岁以下1825岁2635岁3645岁4655岁5665岁65岁以上3000元以下30005000500080008000元以上大专本科研究生及以上其他百分比/(%)问卷44.8755.131.2858.3330.135.133.851.28040.3823.0817.3119.236.4160.2628.854.49问卷29.1170.892.5331.6534.8116.469.495.06018.3530.3834.1817.0910.7667.7218.353

36、.16项目婚姻职业说 明已婚未婚全日制学生生产人员销售人员市场/公关人员客服人员行政/后勤人员人力资源财务/审计人员文职/办事人员技术/研发人员管理人员教师顾问/咨询专业人士其他百分比/(%)问卷30.7769.2336.548.978.973.211.923.211.922.563.217.053.855.130.644.498.33问卷62.0337.9718.998.8613.295.701.271.271.271.273.804.433.1629.110.633.163.8项目居住地与工作地距离常用通勤方式说 明2 km以下25 km510 km1015 km1520 km2025 k

37、m2530 km30 km以上未工作自驾车出租车公交地铁步行自行车其他百分比/(%)问卷17.3119.2314.112.827.053.210.643.8521.7926.285.1312.1828.858.3313.465.77问卷19.6222.1519.6213.296.962.531.274.4310.1329.117.5915.1915.829.4917.725.063 实验结果及分析3.1 分类-决策实验该实验的有效数据统计结果如表6所示。表6 分类-决策实验有效数据结果Tab.6 Statistical results of Categorization-decisionexp

38、eriment分类决策P()S0.507P()M|S0.434P()D0.493P()M|D0.049PT()M0.244单独决策P()M0.569在表6中,P()S和P()D分别代表将图片所示盘山公路分为安全和危险的概率,P()M|S和P()M|D分别表示在分类为安全和危险的前提下决定选择盘山公路出行的概率。P()M代表未分类情况下决定选择盘山公路出行的概率,数值为0.569,PT()M为总概率,由全概率公式计算,根据经典概率论,P()M和PT()M应该满足公式(5):P()M=PT()M=P()S P()M|S+P()D P()M|D(5)34交通运输工程与信息学报第21卷根据这一理论,实

39、验测得的P()M应与计算所得的PT()M结果相近,即同为0.244左右。但问卷数据表明,P()M值为 0.569,远大于PT()M。且单独决策条件下选择盘山公路的概率应为每种分类状态下两种概率的加权平均值,即应该得到:P()M|S P()M P()M|D,但结果显示为P()M P()M|S P()M|D,再次与全概率定律相悖。因此,分类对结果产生了负干扰效应。使用Feynman的路径图规则来初步分析量子模型,根据Feynman第一规则:路径的振幅大小由沿着路径的每个跃迁的振幅乘积计算得出。因此,ZSM路径的振幅等于S|ZM|S,ZDT路径的振幅等于D|ZT|D。在分类-决策问题设计中,人的状态

40、变化过程有着清晰明确的路径,根据Feynman第三规则,如果观察所遵循的路径(即将叠加态分解为一条确定的路径),那么从初始状态Z到状态M的总概率首先需将每个路径振幅转换为路径概率,然后对所有可能路径的路径概率求和,即:P()Z M=|M|Z|2=|S|ZM|S|2+|D|ZM|D|2(6)根据 Feynman 第二规则,如果没有观察到从初始状态Z到状态M的路径(即系统在路径上保持叠加状态),那么首先将所有可能路径的路径振幅相加,然后取该和的平方。即:P()Z M=|S|ZM|S+D|ZM|D|2=|S|Z|2|M|S|2+|D|Z|2|M|D|2+2|S|ZM|SD|ZM|D|cos(7)可以

41、看出,相比于公式(6),公式(7)多了2|S|ZM|SD|ZM|D|cos这一干扰项,这便代表了决策者在选择潜在决策路径过程中产生的干扰。代入问卷数据计算得:P()Z M=(0.507 0.434+0.4930.049)2=0.244+1.249cos=0.569,若 令cos=0.26,则 可 得P()Z M等于0.569,这便与实验得出的P()M结果相符合,使干扰效应得到解释。值得注意的是,在这类问题中,cos相当于确定一个参照系且其取值并非唯一确定。因此,在不同的问题中,对cos进行赋值可以解释数据结果违反全概率公式的现象,说明不同情况下分类带来的正面或负面干扰,证明了量子决策模型可以用

42、于研究交通出行问题中的干扰效应,且首先对图片进行分类有助于提醒被试者思考盘山公路的安全性,从而一定程度上降低对其的选择概率,这与人们的普遍思路和问卷结果是一致的。3.2 合取谬误实验该实验的有效数据统计结果如表7所示。表7 合取谬误问题事件(2)被选概率Tab.7 Probability of selecting event(2)in conjunctionfallacy experiment问 卷问卷问卷平均值1(王照)66.67%65.19%65.93%2(张耀)74.36%69.62%71.99%3(刘中)78.85%62.66%70.76%4(贺国)67.31%58.23%62.77%

43、表7给出了复合事件(2)被选择的概率,发现复合事件(2)被选择的概率皆大于50%,即被试者认为复合事件(2)发生的概率比单独发生的事件(1)概率要大,这与经典概率理论计算的结果,即复合事件(2)发生的概率应小于单独事件(1)发生的概率,相矛盾。合取谬误现象无法通过经典的概率理论进行解释,但量子决策模型可通过几何式的投影模型来解释这种违反经典决策理论的现象。在此模型中有两个问题:公共交通方式出行问题和一线城市生活问题,每个问题有两个答案:是或否。在图2所示的二维模型中,两组相互正交的直角坐标系分别表示两个不同问题的答案,W轴表示王照平时会选择公共交通方式通勤,W 轴表示王照平时不会选择公共交通方

44、式通勤;G1表示王照在一线城市生活,G1表示王照不在一线城市生活。表示初始信念状态Z与W轴的夹角,表示初始信念状态Z与G1轴的夹角,表示G1轴与W轴的夹角。被试者的初始信念状态通过单位向量Z表示,认为王照平时会选择公共交通方式通勤的概率幅W|Z等于Z在W轴上的投影长度,即其概率为该投影长度的平方;同理,被试者判断王照在一线城市生活的概率幅G1|Z等于Z在G1轴上的投影长度,即其概率为该投影长度的平方。赵传林 等:交通出行选择行为的量子决策实验研究35第2期图2 王照问题几何投影解释图Fig.2 Geometric projection interpretation diagram ofWang

45、 Zhao problem在问题描述中,王照的人物特征更倾向于他生活在一线城市,因此初始信念状态Z更靠近G1轴。当被试者先做出王照在一线城市生活的判断时,其信念状态随之从Z转变为G1,随后做出王照平时会选择公共交通方式通勤的判断时,其信念状态从G1转变为W,根据Feynman第一规则,这一复合事件的概率等于|oe|2|ob|2。若被试者直接做出王照会选择公共交通方式出勤的选择,其信念状态从Z直接转变为W,则这一事件的概率等于|oa|2。由于两份问卷在合取谬误实验部分的问题设置相同,故对每个小题选择选项(2)的概率取平均值作为最终分析数据,根据 Feynman第一规则,选择选项(1)的概率为:P

46、()Z W=|W|Z|2=|oa|2(8)即:P()Z W=|oa=cos(9)选择选项(2)的概率为:P()Z G1 W=|G1|Z|2|W|G1|2=|oe|2|ob|2(10)即:P()Z G1 W=|oe|ob=cos2 cos(11)考虑到被试者的做题惯性和问卷高典型描述的引导,最终结果可能偏大,故本模型尝试使用系数来修正这一误差,即公式(11)、(12)分别改为:P()Z G1 W=|G1|Z|2|W|G1|2 2=|oe|2|ob|2 2(12)即:P()Z G1 W=|oe|ob =cos2 cos (13)经过数据拟合,取=1.25,根据公式(3)、(4)、(8)、(9)、(

47、12)、(13)分别计算出、的两组取值如表8、表9所示。表8 合取谬误问题部分几何模型角度计算结果(1)Tab.8 Results(1)of quantum geometric projection modelfor conjunction fallacy experiment影响系数1(王照)54.2895.25049.0392(张耀)58.04914.50043.5493(刘中)57.26912.00045.2694(贺国)52.3961.80050.596表9 合取谬误问题部分几何模型角度计算结果(2)Tab.9 Results(2)of quantum geometric projec

48、tion modelfor conjunction fallacy experiment影响系数1(王照)54.28933.50020.7892(张耀)58.04927.60030.4493(刘中)57.26929.10028.1694(贺国)52.39635.50016.896结合实际情况分析,值越小,则代表初始信念状态下对干扰项问题即王照生活在一线城市回答是的概率越大,但人们不可能在没有任何提示的情况下对干扰项有较为明确的选择倾向,故选用表9中计算结果。问卷中的另外三个问题皆可用几何式的投影模型解释,原理与上述王照问题相同,如图3所示。从心理学方面分析,仅通过王照的人物特征描述很难确定他是

49、否会选择公共交通方式出勤,但博士毕业后在本市从事医学专业工作,关心社会公平与歧视等信息可以推断出此人应在较为发达的城市学习或工作,因此如果被试者首先对王照在一线城市生活做出了是的判断,那么王照就更容易被认为会选择公共交通方式出行。因此,间接路径Z G1 W比直接路径Z W的可能性更大。直接过渡Z W并不迫使被试者对王照是否在一线城市生活形成确定回答,因此对于这个问题,被试者可以保持一种叠加状态。但间接过渡Z G1 W使人们在回36交通运输工程与信息学报第21卷答是否选择公共交通方式通勤之前对合取问题是否在一线城市生活的判断变得明确,打破了是与否之间的叠加态,产生正面干扰,增加了对初始问题说是的

50、可能性。(a)张耀问题几何投影解释图(b)刘中问题几何投影解释图(c)贺国问题几何投影解释图图3 合取谬误现象几何投影解释图Fig.3 Geometric projection interpretation diagram值得注意的是,问题处理顺序在量子理论中至关重要。若将选项改为(1)王照在一线城市生活;(2)王照平时会选择公共交通方式通勤并且在一线城市生活,则每个选项的概率会大不相同。根据Feynman第一规则和表9中结果,若合取问题变为是否选择公共交通方式通勤,则选项(2)的概率变 为P(Z W G1),|W|Z|2|G1|W|2=cos4 cos2=0.101 5,远小于初始问题设置。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服