ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:618.04KB ,
资源ID:6468480      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6468480.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(5.5分式方程1好的名师优质课获奖市赛课一等奖课件.ppt)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

5.5分式方程1好的名师优质课获奖市赛课一等奖课件.ppt

1、,*,本幻灯片资料仅供参考,不能作为科学依据,如有不当之处,请参考专业资料。,5,.,5,分式方程,第1页,1、,2,(,x,1,),=,x,1,;,x,2,x,-20=0;,x,+2,y,=1,2、,整式方程:,方程两边都是整式方程.,分式方程:,方程中只含分式,或分式和整式,而且分母里含有未知数方程.,观察以下方程,:,概 念,一元一次方程,一元二次方程,第2页,找一找:,1.,以下方程中属于分式方程有(),;,属于一元分式方程有().,x,2,+2,x,-1=0,巩 固 定 义,第3页,2、已知分式 ,当,x,时,分式有意义.,3,、分式 与 最简公分母,是,.,x,2,-10,x,(,

2、x,3),1,2,x,(,x,3),第4页,这个方程分母中含有未知数,【,分式方程定义,】,分母中含未知数方程叫做,分式方程,.,区别,整式方程未知数不在分母中,分式方程分母中含有未知数,第5页,(,否,),(,是,),(,是,),(,是,),判断下列说法是否正确:,第6页,以下方程中,哪些是,分式方程,?哪些,整式方程,.,整式方程,分式方程,第7页,解方程,回顾与思索,4,、化系数为,1.,1,、去分母,2,、去括号,.,3,、移项,.,合并同类项,步骤,解,:,第8页,化简,得整式方程 7(,x,+3)=2(2,x,-,3),解整式方程,得,x,=,-,9.,把,x,=,-,9代入原方程

3、,左边=,右边=.,左边=右边,原方程根是,x,=,-,9.,分式方程,整式方程,解整式方程,检 验,转化,检验:,得,7(2,x,-,3),7(2,x,-,3,),解:方程两边同乘以最简公分母,7(2,x,-,3,),知识应用,例1 解分式方程,:,第9页,解分式方程普通步骤,:,1.,去分母。,化分式方程为整式方程,.,即把分式方程两边,同,乘以最简公分母,.,2.,解这个整式方程,.,3.,检验,.,把整式方程,解,(,根,),代入,最简公分母,若结果为零则是增根,必须舍去,若结果不为,0,则是原方程根,.,4.,写结论,概括总结,第10页,类似,注意,:,不含分母项也要乘以最简公分母,

4、第11页,解方程,:,(,1,),(,3,),(,4,),第12页,例,2,解方程,解 方程两边同乘以,最简公分母,(,x,-,3,),解整式方程,得,x,=3,检验,:把,x,=3 代入原方程,结果使原方程最简公分母,x,-,3=0,分式无意义,所以,x,=3不是原方程根,.,原方程无解,.,得 2,-,x,=,-,1,-,2(,x,-,3).,增根,第13页,增根定义,增根,:在去分母,将分式方程转化为整式方程过程中出现不适合于原方程根.,产生原因,:分式方程两边同乘以一个,零因式,后,所得根是整式方程根,而不是分式方程根.,使分母为零根,必须检验,第14页,2,、分式方程 最简公分母是,

5、.,3,、假如 有增根,那么增根为,.,x,=2,x,-,1,4,、关于,x,方程,=4,解是,x,=,则,a,=,.,2,第15页,解分式方程普通步骤,1,、去分母,,2,、解整式方程,.,3,、验根,4,、写结论,.,解分式方程思绪是:,分式方程,整式方程,去分母,验根,等号两边都乘以,最简公分母,第16页,6,、解以下方程:,;,.,第17页,检验可有新方法,?,使分母为零未知数值,就是增根,.,试说明这么检验理由.,第18页,解方程分式方程,第19页,议一议,启迪思维,解分式方程普通需要哪几个步骤,?,去分母,化为整式方程,:,把各分母分解因式,;,找出各分母最简公分母,;,方程两边各项乘以最简公分母,.,解整式方程,.,检验,.,(1),把,未知数值代入原方程,(,普通方法,);,(2),把,未知数值代入最简公分母,(,简便方法,).,结论,:确定分式方程解,.,想一想,1,这里检验要以计算正确为前提,第20页,解分式方程轻易犯错误主要有:,(1),去分母时,原方程整式部分漏乘,(2),约去分母后,分子是多项式时,要注意添括号,(3),增根不舍掉,.,(4),想一想,2,第21页,再 见,第22页,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服