ImageVerifierCode 换一换
格式:PDF , 页数:36 ,大小:752.56KB ,
资源ID:6425717      下载积分:3 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6425717.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【文***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【文***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(山西省中考数学试卷(含解析版).pdf)为本站上传会员【文***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山西省中考数学试卷(含解析版).pdf

1、山西省中考数学试卷山西省中考数学试卷一、选择题(共一、选择题(共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分)1(3 分)(2014山西)计算2+3 的结果是()A 1 B 1 C 5 D 62(3 分)(2014山西)如图,直线 AB、CD 被直线 EF 所截,ABCD,1=110,则2 等于()A 65 B 70 C 75 D 803(3 分)(2014山西)下列运算正确的是()A 3a2+5a2=8a4 B a6a2=a12 C(a+b)2=a2+b2 D(a2+1)0=14(3 分)(2014山西)如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它解决的

2、数学问题是()A 黄金分割 B 垂径定理 C 勾股定理 D 正弦定理5(3 分)(2014山西)如图是由三个小正方体叠成的一个几何体,它的左视图是()A B C D 6(3 分)(2014山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A 演绎 B 数形结合 C 抽象 D 公理化7(3 分)(2014山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A 频率就是概率 B 频率与试验次数无关 C 概率是随机的,与频率无关 D 随着试验次数的增加,频率

3、一般会越来越接近概率8(3 分)(2014山西)如图,O 是ABC 的外接圆,连接 OA、OB,OBA=50,则C 的度数为()A 30 B 40 C 50 D 809(3 分)(2014山西)PM2.5是指大气中直径小于或等于 2.5m(1m=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害2.5m 用科学记数法可表示为()A 2.5105m B 0.25107m C 2.5106m D25105m10(3 分)(2014山西)如图,点 E 在正方形 ABCD 的对角线 AC 上,且EC=2AE,直角三角形 FEG 的两直角边

4、 EF、EG 分别交 BC、DC 于点 M、N若正方形 ABCD 的变长为 a,则重叠部分四边形 EMCN 的面积为()A a2 B a2 C a2 D a2二、填空题(共二、填空题(共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分)11(3 分)(2014山西)计算:3a2b32a2b=12(3 分)(2014山西)化简+的结果是 13(3 分)(2014山西)如图,已知一次函数 y=kx4 的图象与 x 轴、y 轴分别交于 A、B 两点,与反比例函数 y=在第一象限内的图象交于点 C,且 A 为 BC的中点,则 k=14(3 分)(2014山西)甲、乙、丙三位同学打乒乓球,

5、想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 15(3 分)(2014山西)一走廊拐角的横截面积如图,已知 ABBC,ABDE,BCFG,且两组平行墙壁间的走廊宽度都是 1m,的圆心为 O,半径为 1m,且EOF=90,DE、FG 分别与O 相切于 E、F 两点若水平放置的木棒 MN 的两个端点 M、N 分别在 AB 和 BC 上,且 MN 与O 相切于点 P,P 是的中点,则木棒 MN 的长度为 m16(3

6、 分)(2014山西)如图,在ABC 中,BAC=30,AB=AC,AD 是 BC边上的中线,ACE=BAC,CE 交 AB 于点 E,交 AD 于点 F若 BC=2,则EF 的长为 三、解答题(共三、解答题(共 8 小题,共小题,共 72 分)分)17(10 分)(2014山西)(1)计算:(2)2sin60()1;(2)分解因式:(x1)(x3)+118(6 分)(2014山西)解不等式组并求出它的正整数解:19(6 分)(2014山西)阅读以下材料,并按要求完成相应的任务几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四

7、边形筝形 所谓筝形,它的形状与我们生活中风筝的骨架相似定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形 ABCD 是筝形,其中 AB=AD,CB=CD判定:两组邻边分别相等的四边形是筝形有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图 1 的画法,在图 2 所示的 88 网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:顶点都在格点上;所涉及的图案既是轴对称图形又是中心对

8、称图形;将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影)20(10 分)(2014山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲938673乙958179(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按 3:5:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含

9、右端数值,如最右边一组分数 x 为:85x90),并决定由高分到低分录用 8 名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率21(7 分)(2014山西)如图,点 A、B、C 表示某旅游景区三个缆车站的位置,线段 AB、BC 表示连接缆车站的钢缆,已知 A、B、C 三点在同一铅直平面内,它们的海拔高度 AA,BB,CC分别为 110 米、310 米、710 米,钢缆 AB 的坡度 i1=1:2,钢缆 BC 的坡度 i2=1:1,景区因改造缆车线路,需要从 A 到 C 直线架设一条钢缆,那么钢缆 AC 的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)22(9

10、分)(2014山西)某新建火车站站前广场需要绿化的面积为 46000 米2,施工队在绿化了 22000 米2后,将每天的工作量增加为原来的 1.5 倍,结果提前 4天完成了该项绿化工程(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为 20 米,宽为 8 米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为 56 米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23(11 分)(2014山西)课程学习:正方形折纸中的数学动手操作:如图 1,四边形 ABCD 是一张正方形纸片,先将正方形 ABCD 对折,使 BC 与 AD

11、重合,折痕为 EF,把这个正方形展平,然后沿直线 CG 折叠,使 B点落在 EF 上,对应点为 B数学思考:(1)求CBF 的度数;(2)如图 2,在图 1 的基础上,连接 AB,试判断BAE 与GCB的大小关系,并说明理由;解决问题:(3)如图 3,按以下步骤进行操作:第一步:先将正方形 ABCD 对折,使 BC 与 AD 重合,折痕为 EF,把这个正方形展平,然后继续对折,使 AB 与 DC 重合,折痕为 MN,再把这个正方形展平,设 EF 和 MN 相交于点 O;第二步:沿直线 CG 折叠,使 B 点落在 EF 上,对应点为 B,再沿直线 AH 折叠,使 D 点落在 EF 上,对应点为

12、D;第三步:设 CG、AH 分别与 MN 相交于点 P、Q,连接 BP、PD、DQ、QB,试判断四边形 BPDQ 的形状,并证明你的结论24(13 分)(2014山西)综合与探究:如图,在平面直角坐标系 xOy 中,四边形 OABC 是平行四边形,A、C 两点的坐标分别为(4,0),(2,3),抛物线 W经过 O、A、C 三点,D 是抛物线 W 的顶点(1)求抛物线 W 的解析式及顶点 D 的坐标;(2)将抛物线 W 和OABC 一起先向右平移 4 个单位后,再向下平移 m(0m3)个单位,得到抛物线 W和OABC,在向下平移的过程中,设OABC与OABC 的重叠部分的面积为 S,试探究:当

13、m 为何值时 S 有最大值,并求出 S 的最大值;(3)在(2)的条件下,当 S 取最大值时,设此时抛物线 W的顶点为 F,若点 M是 x 轴上的动点,点 N 时抛物线 W上的动点,试判断是否存在这样的点 M 和点N,使得以 D、F、M、N 为顶点的四边形是平行四边形?若存在,请直接写出点 M 的坐标;若不存在,请说明理由山西省中考数学试卷山西省中考数学试卷参考答案与试题解析参考答案与试题解析一、选择题(共一、选择题(共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分)1(3 分)(2014山西)计算2+3 的结果是()A1B1C5D6【考点】有理数的加法菁优网版权所有【分析】

14、根据异号两数相加的法则进行计算即可【解答】解:因为2,3 异号,且|2|3|,所以2+3=1故选 A【点评】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值2(3 分)(2014山西)如图,直线 AB、CD 被直线 EF 所截,ABCD,1=110,则2 等于()A65B70C75D80【考点】平行线的性质菁优网版权所有【分析】根据“两直线平行,同旁内角互补”和“对顶角相等”来求2 的度数【解答】解:如图,ABCD,1=110,1+3=180,即 100+3=180,3=70,2=3=70故选:B【点评】本题考查了平行线的性质总结:平行线性质定理定理 1:两条平

15、行线被第三条直线所截,同位角相等 简单说成:两直线平行,同位角相等定理 2:两条平行线被地三条直线所截,同旁内角互补 简单说成:两直线平行,同旁内角互补 定理 3:两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等3(3 分)(2014山西)下列运算正确的是()A3a2+5a2=8a4Ba6a2=a12C(a+b)2=a2+b2 D(a2+1)0=1【考点】完全平方公式;合并同类项;同底数幂的乘法;零指数幂菁优网版权【专题】计算题【分析】A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果

16、,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断【解答】解:A、原式=8a2,故选项错误;B、原式=a8,故选项错误;C、原式=a2+b2+2ab,故选项错误;D、原式=1,故选项正确故选 D【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键4(3 分)(2014山西)如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它解决的数学问题是()A黄金分割 B垂径定理C勾股定理D正弦定理【考点】勾股定理的证明菁优网版权所有【分析】“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明【解答】解:“弦图”,说

17、明了直角三角形的三边之间的关系,解决的问题是:勾股定理故选 C【点评】本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明5(3 分)(2014山西)如图是由三个小正方体叠成的一个几何体,它的左视图是()ABCD【考点】简单组合体的三视图菁优网版权所有【分析】根据从左边看得到的图形是左视图,可得答案【解答】解:从左边看第一层一个正方形,第二层一个正方形,故选:C【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图6(3 分)(2014山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性

18、质,这种研究方法主要体现的数学思想是()A演绎B数形结合C抽象D公理化【考点】二次函数的性质;一次函数的性质;反比例函数的性质菁优网版权所【专题】数形结合【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想故选 B【点评】本题考查了二次函数的性质:二次函数 y=ax2+bx+c(a0)的顶点坐标是(,),对称轴直线 x=,二次函数 y=ax2+bx+c(a0)的图象具有如下性质:当 a0 时,抛物

19、线 y=ax2+bx+c(a0)的开口向上,x时,y 随 x 的增大而减小;x时,y 随 x 的增大而增大;x=,时,y 取得最小值,即顶点是抛物线的最低点;当 a0 时,抛物线 y=ax2+bx+c(a0)的开口向下,x时,y 随 x 的增大而增大;x时,y 随 x 的增大而减小;x=时,y 取得最大值,即顶点是抛物线的最高点7(3 分)(2014山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A频率就是概率B频率与试验次数无关C概率是随机的,与频率无关D随着试验次数的增加,频率一般会越来越接近概率【考点】利用频率估计概率菁优网版权所有【分析】根据大量重复试验事件发

20、生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答【解答】解:大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,A、B、C 错误,D 正确故选 D【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率8(3 分)(2014山西)如图,O 是ABC 的外接圆,连接 OA、OB,OBA=50,则C 的度数为()A30B40C50D80【考点】圆周角定理菁优网版权所有【分析】根据三角形的内角和定理求得AOB 的度数,再进一步根据圆周角定理求解【解答】解:OA=OB,O

21、BA=50,OAB=OBA=50,AOB=180502=80,C=AOB=40故选:B【点评】此题综合运用了三角形的内角和定理以及圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半9(3 分)(2014山西)PM2.5 是指大气中直径小于或等于 2.5m(1m=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害2.5m 用科学记数法可表示为()A2.5105mB0.25107mC2.5106mD25105m【考点】科学记数法表示较小的数菁优网版权所有【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a10n,与

22、较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定【解答】解:2.5m0.000001m=2.5106m;故选:C【点评】本题考查用科学记数法表示较小的数,一般形式为 a10n,其中 1|a|10,n 为由原数左边起第一个不为零的数字前面的 0 的个数所决定10(3 分)(2014山西)如图,点 E 在正方形 ABCD 的对角线 AC 上,且EC=2AE,直角三角形 FEG 的两直角边 EF、EG 分别交 BC、DC 于点 M、N若正方形 ABCD 的变长为 a,则重叠部分四边形 EMCN 的面积为()A a2B a2Ca2D a2【考点

23、】全等三角形的判定与性质;正方形的性质菁优网版权所有【分析】作 EMBC于点 M,EQCD 于点 Q,EPMEQN,利用四边形 EMCN的面积等于正方形 MCQE 的面积求解【解答】解:作 EMBC 于点 M,EQCD 于点 Q,四边形 ABCD 是正方形,BCD=90,又EPM=EQN=90,PEQ=90,PEM+MEQ=90,三角形 FEG 是直角三角形,NEF=NEQ+MEQ=90,PEM=NEQ,AC 是BCD 的角平分线,EPC=EQC=90,EP=EN,四边形 MCQE 是正方形,在EPM 和EQN 中,EPMEQN(ASA)SEQN=SEPM,四边形 EMCN 的面积等于正方形

24、MCQE 的面积,正方形 ABCD 的边长为 a,AC=a,EC=2AE,EC=a,EP=PC=a,正方形 MCQE 的面积=a a=a2,四边形 EMCN 的面积=a2,故选:D【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出EPMEQN二、填空题(共二、填空题(共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分)11(3 分)(2014山西)计算:3a2b32a2b=6a4b4【考点】单项式乘单项式菁优网版权所有【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可【

25、解答】解:3a2b32a2b=(32)(a2a2)(b3b)=6a4b4故答案为:6a4b4【点评】此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键12(3 分)(2014山西)化简+的结果是【考点】分式的加减法菁优网版权所有【专题】计算题【分析】原式通分并利用同分母分式的加法法则计算即可得到结果【解答】解:原式=+=故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键13(3 分)(2014山西)如图,已知一次函数 y=kx4 的图象与 x 轴、y 轴分别交于 A、B 两点,与反比例函数 y=在第一象限内的图象交于点 C,且 A 为 BC的中点,则 k=4【考点

26、】反比例函数与一次函数的交点问题菁优网版权所有【专题】计算题【分析】先确定 B 点坐标,根据 A 为 BC 的中点,则点 C 和点 B 关于点 A 中心对称,所以 C 点的纵坐标为 4,再利用反比例函数图象上点的坐标特征可确定 C点坐标,然后把 C 点坐标代入 y=kx4 即可得到 k 的值【解答】解:把 y=0 代入 y=kx4 得 y=4,则 B 点坐标为(0,4),A 为 BC 的中点,C 点的纵坐标为 4,把 y=4 代入 y=得 x=2,C 点坐标为(2,4),把 C(2,4)代入 y=kx4 得 2k4=4,解得 k=4故答案为 4【点评】本题考查了反比例函数与一次函数的交点问题:

27、反比例函数与一次函数图象的交点坐标满足两函数解析式14(3 分)(2014山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是【考点】列表法与树状图法菁优网版权所有【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案【解答】解:分别用 A,B 表示手心,手背画树状图得:共有 8 种等可能的结果,通

28、过一次“手心手背”游戏能决定甲打乒乓球的有 4 种情况,通过一次“手心手背”游戏能决定甲打乒乓球的概率是:=故答案为:【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比15(3 分)(2014山西)一走廊拐角的横截面积如图,已知 ABBC,ABDE,BCFG,且两组平行墙壁间的走廊宽度都是 1m,的圆心为 O,半径为 1m,且EOF=90,DE、FG 分别与O 相切于 E、F 两点若水平放置的木棒 MN 的两个端点 M、N 分别在 A

29、B 和 BC 上,且 MN 与O 相切于点 P,P 是的中点,则木棒 MN 的长度为(42)m【考点】切线的性质菁优网版权所有【专题】应用题【分析】连接 OB,延长 OF,OE 分别交 BC 于 H,交 AB 于 G,证得四边形 BGOH是正方形,然后证得 OB 经过点 P,根据勾股定理切点 OB 的长,因为半径OP=1,所以 BP=21,然后求得BPMBPN 得出 P 是 MN 的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得【解答】解:连接 OB,延长 OF,OE 分别交 BC 于 H,交 AB 于 G,DE、FG 分别与O 相切于 E、F 两点,OEED,OFFG,ABDE,

30、BCFG,OGAB,OHBC,EOF=90,四边形 BGOH 是矩形,两组平行墙壁间的走廊宽度都是 1m,O 半径为 1m,OG=OH=2,矩形 BGOH 是正方形,BOG=BOH=45,P 是的中点,OB 经过 P 点,在正方形 BGOH 中,边长=2,OB=2,OP=1,BP=21,p 是 MN 与O 的切点,OBMN,OB 是正方形 BGOH 的对角线,OBG=OBH=45,在BPM 与BPN 中BPMBPN(ASA)MP=NP,MN=2BP,BP=21,MN=2(21)=42,【点评】本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B 三

31、点共线是本题的关键16(3 分)(2014山西)如图,在ABC 中,BAC=30,AB=AC,AD 是 BC边上的中线,ACE=BAC,CE 交 AB 于点 E,交 AD 于点 F若 BC=2,则EF 的长为1【考点】勾股定理;等腰三角形的性质;含 30 度角的直角三角形;等腰直角三角形菁优网版权所有【分析】过 F 点作 FGBC根据等腰三角形的性质和三角形内角和定理可得AF=CF,在 RtCDF 中,根据三角函数可得 AF=CF=2,DF=,根据平行线分线段成比例可得比例式 GF:BD=AF:AD,求得 GF=42,再根据平行线分线段成比例可得比例式 EF:EC=GF:BC,依此即可得到 E

32、F=1【解答】解:过 F 点作 FGBC在ABC 中,AB=AC,AD 是 BC 边上的中线,BD=CD=BC=1,BAD=CAD=BAC=15,ADBC,ACE=BAC,CAD=ACE=15,AF=CF,ACD=(18030)2=75,DCE=7515=60,在 RtCDF 中,AF=CF=2,DF=CDtan60=,FGBC,GF:BD=AF:AD,即 GF:1=2:(2+),解得 GF=42,EF:EC=GF:BC,即 EF:(EF+2)=(42):2,解得 EF=1故答案为:1【点评】综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难

33、点是作出辅助线,寻找解题的途径三、解答题(共三、解答题(共 8 小题,共小题,共 72 分)分)17(10 分)(2014山西)(1)计算:(2)2sin60()1;(2)分解因式:(x1)(x3)+1【考点】实数的运算;因式分解-运用公式法;负整数指数幂;特殊角的三角函数值菁优网版权所有【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案【解答】解:(1)原式=22=2;(2)原式=x24x+3+1=(x2)2【点评】本题考查实数的综合运算能力

34、,是各地中考题中常见的计算题型解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算18(6 分)(2014山西)解不等式组并求出它的正整数解:【考点】解一元一次不等式组;一元一次不等式组的整数解菁优网版权所有【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集【解答】解:解得:x,解得:x2,则不等式组的解集是:x2则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断还可以观察不等式的解,若 x较小的数、较大的数,那么解集为 x 介于两数之间19(6 分)(2014山西)阅

35、读以下材料,并按要求完成相应的任务几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形筝形所谓筝形,它的形状与我们生活中风筝的骨架相似定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形 ABCD 是筝形,其中 AB=AD,CB=CD判定:两组邻边分别相等的四边形是筝形有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝

36、形和菱形的相同点和不同点各两条;(2)请仿照图 1 的画法,在图 2 所示的 88 网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:顶点都在格点上;所涉及的图案既是轴对称图形又是中心对称图形;将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影)【考点】利用旋转设计图案;菱形的性质;利用轴对称设计图案菁优网版权所有【分析】(1)利用菱形的性质以及结合图形得出筝形的性质分别得出异同点即可;(2)利用轴对称图形和中心对称图形的定义结合题意得出答案【解答】解:(1)相同点:两组邻边分别相等;有一组对角相等;一条对角线垂直平分另一条对角线;一条对角线平分一组对角;

37、都是轴对称图形;面积等于对角线乘积的一半;不同点:菱形的对角线互相平分,筝形的对角线不互相平分;菱形的四边都相等,筝形只有两组邻边分别相等;菱形的两组对边分别平行,筝形的对边不平行;菱形的两组对角分别相等,筝形只有一组对角相等;菱形的邻角互补,筝形的邻角不互补;菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:【点评】此题主要考查了利用旋转设计图案,借助网格得出符合题意的图形是解题关键20(10 分)(2014山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲93867

38、3乙958179(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按 3:5:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数 x 为:85x90),并决定由高分到低分录用 8 名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率【考点】频数(率)分布直方图;算术平均数;加权平均数菁优网版权所有【分析】(1)根据平均数的计算公

39、式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可;来源:学科网 ZXXK(3)由直方图知成绩最高一组分数段 85x90 中有 7 人,公司招聘 8 人,再根据 x甲=85.5 分,得出甲在该组,甲一定能被录用,在 80 x85 这一组内有 10 人,仅有 1 人能被录用,而 x乙=84.8 分,在这一段内不一定是最高分,得出乙不一定能被录用;最后根据频率=进行计算,即可求出本次招聘人才的录用率【解答】解:(1)甲的平均成绩是:x甲=84(分),乙的平均成绩为:x乙=85(分),x乙x甲,乙将被录用;来源:学科网(2)根据题意得:x甲=85.5(分),x乙=84.8(分);x甲

40、x乙,甲将被录用;(3)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段 85x90 中有 7 人,公司招聘 8 人,又因为 x甲=85.5 分,显然甲在该组,所以甲一定能被录用;在 80 x85 这一组内有 10 人,仅有 1 人能被录用,而 x乙=84.8 分,在这一段内不一定是最高分,所以乙不一定能被录用;由直方图知,应聘人数共有 50 人,录用人数为 8 人,所以本次招聘人才的录用率为=16%【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题21(7 分)(2014

41、山西)如图,点 A、B、C 表示某旅游景区三个缆车站的位置,线段 AB、BC 表示连接缆车站的钢缆,已知 A、B、C 三点在同一铅直平面内,它们的海拔高度 AA,BB,CC分别为 110 米、310 米、710 米,钢缆 AB 的坡度 i1=1:2,钢缆 BC 的坡度 i2=1:1,景区因改造缆车线路,需要从 A 到 C 直线架设一条钢缆,那么钢缆 AC 的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题菁优网版权所有【专题】应用题【分析】过点 A 作 AECC于点 E,交 BB于点 F,过点 B 作 BDCC于点 D,分别求出 AE、CE,

42、利用勾股定理求解 AC 即可【解答】解:过点 A 作 AECC于点 E,交 BB于点 F,过点 B 作 BDCC于点D,则AFB、BDC、AEC 都是直角三角形,四边形 AABF,BBCD 和 BFED都是矩形,BF=BBBF=BBAA=310110=200,CD=CCCD=CCBB=710310=400,i1=1:2,i2=1:1,AF=2BF=400,BD=CD=400,又EF=BD=400,DE=BF=200,AE=AF+EF=800,CE=CD+DE=600,在 RtAEC 中,AC=1000(米)答:钢缆 AC 的长度是 1000 米【点评】本题考查了解直角三角形的应用,解答本题的关

43、键是理解坡度坡角的定义,及勾股定理的表达式,难度一般22(9 分)(2014山西)某新建火车站站前广场需要绿化的面积为 46000 米2,施工队在绿化了 22000 米2后,将每天的工作量增加为原来的 1.5 倍,结果提前 4天完成了该项绿化工程(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为 20 米,宽为 8 米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为 56 米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【考点】一元二次方程的应用;分式方程的应用菁优网版权所有【分析】(1)利用原工作时间现工作时间=4 这

44、一等量关系列出分式方程求解即可;(2)根据矩形的面积和为 56 平方米列出一元二次方程求解即可【解答】解:(1)设该项绿化工程原计划每天完成 x 米2,根据题意得:=4解得:x=2000,经检验,x=2000 是原方程的解,答:该绿化项目原计划每天完成 2000 平方米;(2)设人行道的宽度为 x 米,根据题意得,(203x)(82x)=56解得:x=2 或 x=(不合题意,舍去)答:人行道的宽为 2 米【点评】本题考查了分式方程及一元二次方程的应用,解分式方程时一定要检验23(11 分)(2014山西)课程学习:正方形折纸中的数学来源:学*科*网动手操作:如图 1,四边形 ABCD 是一张正

45、方形纸片,先将正方形 ABCD 对折,使 BC 与 AD 重合,折痕为 EF,把这个正方形展平,然后沿直线 CG 折叠,使 B点落在 EF 上,对应点为 B数学思考:(1)求CBF 的度数;(2)如图 2,在图 1 的基础上,连接 AB,试判断BAE 与GCB的大小关系,并说明理由;解决问题:(3)如图 3,按以下步骤进行操作:第一步:先将正方形 ABCD 对折,使 BC 与 AD 重合,折痕为 EF,把这个正方形展平,然后继续对折,使 AB 与 DC 重合,折痕为 MN,再把这个正方形展平,设 EF 和 MN 相交于点 O;第二步:沿直线 CG 折叠,使 B 点落在 EF 上,对应点为 B,

46、再沿直线 AH 折叠,使 D 点落在 EF 上,对应点为 D;第三步:设 CG、AH 分别与 MN 相交于点 P、Q,连接 BP、PD、DQ、QB,试判断四边形 BPDQ 的形状,并证明你的结论【考点】四边形综合题菁优网版权所有【分析】(1)由对折得出 CB=CB,在 RTBFC 中,sinCBF=,得出CBF=30,(2)连接 BB交 CG 于点 K,由对折可知,BAE=BBE,由BBE+KBC=90,KBC+GCB=90,得到BBE=GCB,又由折叠知GCB=GCB得BAE=GCB,(3)连接 AB利用三角形全等及对称性得出 EB=NP=FD=MQ,由两次对折可得,OE=ON=OF=OM,

47、OB=OP=0D=OQ,四边形 BPDQ 为矩形,由对折知,MNEF,于点 O,PQBD于点 0,得到四边形 BPDQ 为正方形,【解答】解:(1)如图 1,由对折可知,EFC=90,CF=CD,四边形 ABCD 是正方形,CD=CB,CF=BC,CB=CB,CF=CB在 RTBFC 中,sinCBF=,CBF=30,(2)如图 2,连接 BB交 CG 于点 K,由对折可知,EF 垂直平分 AB,BA=BB,BAE=BBE,四边形 ABCD 是正方形,ABC=90,BBE+KBC=90,由折叠知,BKC=90,KBC+GCB=90,BBE=GCB,又由折叠知,GCB=GCB,BAE=GCB,(

48、3)四边形 BPDQ 为正方形,证明:如图 3,连接 AB由(2)可知BAE=GCB,由折叠可知,GCB=PCN,BAE=PCN,由对折知AEB=CNP=90,AE=AB,CN=BC,又四边形 ABCD 是正方形,AB=BC,来源:Z&xx&k.ComAE=CN,在AEB和CNPAEBCNPEB=NP,同理可得,FD=MQ,由对称性可知,EB=FD,EB=NP=FD=MQ,由两次对折可得,OE=ON=OF=OM,OB=OP=0D=OQ,四边形 BPDQ 为矩形,由对折知,MNEF,于点 O,PQBD于点 0,四边形 BPDQ 为正方形,【点评】本题主要考查了四边形的综合题,解决本题的关键是找准

49、对折后的相等角,相等边24(13 分)(2014山西)综合与探究:如图,在平面直角坐标系 xOy 中,四边形 OABC 是平行四边形,A、C 两点的坐标分别为(4,0),(2,3),抛物线 W经过 O、A、C 三点,D 是抛物线 W 的顶点(1)求抛物线 W 的解析式及顶点 D 的坐标;(2)将抛物线 W 和OABC 一起先向右平移 4 个单位后,再向下平移 m(0m3)个单位,得到抛物线 W和OABC,在向下平移的过程中,设OABC与OABC 的重叠部分的面积为 S,试探究:当 m 为何值时 S 有最大值,并求出 S 的最大值;(3)在(2)的条件下,当 S 取最大值时,设此时抛物线 W的顶

50、点为 F,若点 M是 x 轴上的动点,点 N 时抛物线 W上的动点,试判断是否存在这样的点 M 和点N,使得以 D、F、M、N 为顶点的四边形是平行四边形?若存在,请直接写出点 M 的坐标;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点 D 的坐标;(2)由平移性质,可知重叠部分为一平行四边形如答图 2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点 N在 x 轴上方、下方两种情况,分类讨论,避免漏

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服