ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:95.50KB ,
资源ID:6421000      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6421000.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(不确定有限状态自动机的确定化.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

不确定有限状态自动机的确定化.doc

1、 编译原理实验报告 实验名称 不确定有限状态自动机的确定化 实验时间 院系 计算机科学与技术学院 班级 学号 姓名 1.试验目的 输入: 非确定有限(穷)状态自动机。 输出: 确定化

2、的有限(穷)状态自动机 2.实验原理 一个确定的有限自动机(DFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中: (1) K是一个有穷非空集,集合中的每个元素称为一个状态; (2) ∑是一个有穷字母表,∑中的每个元素称为一个输入符号; (3) F是一个从K×∑→K的单值转换函数,即F(R,a)=Q,(R,Q∈K)表示当前状态为R,如果输入字符a,则转到状态Q,状态Q称为状态R的后继状态; (4) S∈K,是惟一的初态; (5) ZK,是一个终态集。 由定义可见,确定有限自动机只有惟一的一个初态,但可以有多个终态,每个状态对字母表中的任一输入符号,最多只有一

3、个后继状态。 对于DFA M,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记符连接形成的字符串可为DFA M所接受。若M的初态结点同时又是终态结点,则称ε可为M所接受(或识别),DFA M所能接受的全部字符串(字)组成的集合记作L(M)。 一个不确定有限自动机(NFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中: (1) k是一个有穷非空集,集合中的每个元素称为一个状态; (2) ∑是一个有穷字母表,∑中的每个元素称为一个输入符号; (3) F是一个从K×∑→K的子集的转换函数; (4) SK,是一个非空的初态集; (5) Z

4、K,是一个终态集。 由定义可见,不确定有限自动机NFA与确定有限自动机DFA的主要区别是: (1)NFA的初始状态S为一个状态集,即允许有多个初始状态; (2)NFA中允许状态在某输出边上有相同的符号,即对同一个输入符号可以有多个后继状态。即DFA中的F是单值函数,而NFA中的F是多值函数。 因此,可以将确定有限自动机DFA看作是不确定有限自动机NFA的特例。和DFA一样,NFA也可以用矩阵和状态转换图来表示。 对于NFA M,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记(ε除外)连接形成的字符串可为M所接受。NFA M所能接受的全部字符串(字)组成

5、的集合记作L(M)。 由于DFA是NFA的特例,所以能被DFA所接受的符号串必能被NFA所接受。 设M1和M2是同一个字母集∑上的有限自动机,若L(M1)=L(M2),则称有限自动机M1和M2等价。 由以上定义可知,若两个自动机能够接受相同的语言,则称这两个自动机等价。DFA是NFA的特例,因此对于每一个NFA M1总存在一个DFA M2,使得L(M1)=L(M2)。即一个不确定有限自动机能接受的语言总可以找到一个等价的确定有限自动机来接受该语言。 NFA确定化为DFA 同一个字符串α可以由多条通路产生,而在实际应用中,作为描述控制过程的自动机,通常都是确定有限自动机DFA,因此这就

6、需要将不确定有限自动机转换成等价的确定有限自动机,这个过程称为不确定有限自动机的确定化,即NFA确定化为DFA。 下面介绍一种NFA的确定化算法,这种算法称为子集法: (1) 若NFA的全部初态为S1,S2,…,Sn,则令DFA的初态为: S=[S1,S2,…,Sn], 其中方括号用来表示若干个状态构成的某一状态。 (2) 设DFA的状态集K中有一状态为[Si,Si+1,…,Sj],若对某符号a∈∑,在NFA中有F({ Si,Si+1,…,Sj },a)={ Si’,Si+1’,…,Sk’ } 则令F({ Si,Si+1,…,Sj },a)={ Si’,Si+1’,…,Sk’ }为

7、DFA的一个转换函数。若[ Si’,Si+1’,…,Sk‘ ]不在K中,则将其作为新的状态加入到K中。 (3) 重复第2步,直到K中不再有新的状态加入为止。 (4) 上面得到的所有状态构成DFA的状态集K,转换函数构成DFA的F,DFA的字母表仍然是NFA的字母表∑。 (5) DFA中凡是含有NFA终态的状态都是DFA的终态。 对于上述NFA确定化算法——子集法,还可以采用另一种操作性更强的描述方式,下面我们给出其详细描述。首先给出两个相关定义。 假设I是NFA M状态集K的一个子集(即I∈K),则定义ε-closure(I)为: (1) 若Q∈I,则Q∈ε-closure(I)

8、 (2) 若Q∈I,则从Q出发经过任意条ε弧而能到达的任何状态Q’,则Q’∈ε-closure(I)。 状态集ε-closure(I)称为状态I的ε闭包。 假设NFA M=(K,∑,F,S,Z),若I∈K,a∈∑,则定义Ia=ε-closure(J),其中J是所有从ε-closure(I)出发,经过一条a弧而到达的状态集。 NFA确定化的实质是以原有状态集上的子集作为DFA上的一个状态,将原状态间的转换为该子集间的转换,从而把不确定有限自动机确定化。经过确定化后,状态数可能增加,而且可能出现一些等价状态,这时就需要简化。 3..实验内容 输入: 非确定有限(穷)状态自动机。

9、 输出: 确定化的有限(穷)状态自动机 4.实验心得 5.实验代码与结果 #include #include #include using namespace std; #define max 100 struct edge{ string first;//边的初始结点 string change;//边的条件 string last;//边的终点 }; int N;//NFA的边数 vector value; string closu

10、re(string a,edge *b) { int i,j; for(i=0;i

11、r(i=0;i

12、j++) { if(t[j]

13、"<>b[i].first; if(b[i].first=="#") break; else cin>>b[i].change>>b[i].last; } N=i; cout<<"请输入该NFA的初态及终态:"<>First>>Last; cout<<"请输入此NFA状态中的输入符号即边上的条件:"<>Change; T[x]=closu

14、re(First,b); T[x]=sort(T[x]); value.push_back(0); i=0; while(value[i]==0&&value.size()) { value[i]=1; for(j=0;j

15、{ if(T[h]==sort(closure(ss,b)))break; } if(h==length) { T[++x]=sort(closure(ss,b)); value.push_back(0); } } i++; } edge *DFA=new edge[max]; for(i=0;i<=x;i++)//构造DFA的各边 { for(j=

16、0;j

17、 for(i=0;i

18、ength();j++) { ss=T[m]; if(ss[j]==First[0])cout<

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服