ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:581.04KB ,
资源ID:6382308      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6382308.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(云南省丽江市玉龙县第一中学2022-2023学年高一上数学期末监测试题含解析.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

云南省丽江市玉龙县第一中学2022-2023学年高一上数学期末监测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1已知圆:与圆:,则两圆的位置关系是A.相交B.相离C.内切D.外切2函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称3函数(且)与函数在同一坐标

2、系内的图象可能是()A.B.C.D.4一钟表的秒针长,经过,秒针的端点所走的路线长为( )A.B.C.D.5设,则A.B.C.D.6是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( )A.B.C.D.7下列四组函数中,表示同一个函数的一组是( )A.,B.,C.,D.,8如图,在菱形ABCD中,下列式子成立的是 A.B.C.D.9若角满足,则角所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10下列区间中,函数单调递增的区间是()A.B.C.D.11已知函数,则( )A.5B.2C.0D.112若,且为第二象限角,则()A.B.C.D.二、填空题(本大

3、题共4小题,共20分)13函数在一个周期内的图象如图所示,此函数的解析式为_14函数,若最大值为,最小值为,则的取值范围是_.15已知,若,则的最小值是_.16已知函数,则_.三、解答题(本大题共6小题,共70分)17已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域18已知集合,集合(1)当时,求;(2)当时,求m的取值范围19某城市2021年12月8日的空气质量指数(Air Quality Inex,简称AQI)与时间(单位:小时)的关系满足下图连续曲线,并测得当天AQI的最大值为103当时,曲线是二次函数图象的一部分;当时,曲线是函数(且)图象的一部分,根据

4、规定,空气质量指数AQI的值大于或等于100时,空气就属于污染状态(1)求函数的解析式;(2)该城市2021年12月8日这一天哪个时间段空气属于污染状态?并说明理由20已知,,为坐标原点.(1)若 ,求的值;(2)若,且,求 .21已知不等式 的解集为 (1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.22已知直线l1过点A(1,0),B(3,a1),直线l2过点M(1,2),N(a2,4)(1)若l1l2,求a的值;(2)若l1l2,求a的值参考答案一、选择题(本大题共12小题,共60分)1、C【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切

5、故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离2、C【解析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,则,故,因为,故函数的图象关于直线对称.故选:C.3、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方

6、面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4、C【解析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案.【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为,因此,秒针的端点所走的路线长.故选:C.【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题.5、B【解析】本题首先可以通过函数的性质判断出和的大小,然后通过对数函数的性质判断出与的大小关系,最后即可得

7、出结果【详解】因为函数是增函数,所以,因为,所以,故选B【点睛】本题主要考查了指数与对数的相关性质,考查了运算能力,考查函数思想,体现了基础性与应用性,考查推理能力,是简单题6、B【解析】设,.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言“坐标语言”,实质是将“形”化为“数”向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来7、B【解析】根据相等函数的判定方法,逐项判断,

8、即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项, 因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.8、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误,因此C不对;只有D正确9、C【解析】根据,分别确定的范围,综合即得解.【详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C10、A【解析】解

9、不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数11、C【解析】由分段函数,选择计算【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题12、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角

10、,所以,所以故选:A.二、填空题(本大题共4小题,共20分)13、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,又,三角函数的解析式是.故答案为:.14、【解析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围.【详解】,令,定义域为关于原点对称,为奇函数,由对勾函数的单调性可知在上单调递减,在上单调递增,故答案为:.【点睛】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域

11、上如果有最值,那么最大值和最小值一定是互为相反数.15、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,即时,取“=”号,所以的最小值为16.故答案为:1616、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【详解】(1)由题意得,解得所以当时,即,.(2)令,则,当时,有最小值,当时,有最大值,故.【点睛】本题考查二次函数的解析式求解

12、、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系,则问题便可迎刃而解.18、(1);(2).【解析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,而,.【小问2详解】由,显然,可得.19、(1)(2)当天在这个时间段,该城市的空气处于污染状态,理由见解析【解析】(1)先用待定系数法求得时的解析式,再算得当时的函数值,再由待定系数法可得时的解析式;(2)根据,分段解不等式即可.【小问1详解】当时,将代入得,时,由的图象是一条连续曲线可知,点在的图象上,当时,设,将代入得,【小问2详解】

13、由题意可知,空气属于污染状态时,或,或,当天在这个时间段,该城市的空气处于污染状态20、(1)(2)【解析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【详解】(1)依题, 因,所以, 所以(2)因为, 所以,所以, 因为,所以,所以,所以【点睛】本题主要考查了向量的坐标运算,包括共线、模长、数量积,属于基础题.21、(1); (2).【解析】(1)根据题意得到方程 的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)由已知,且方程 的两根为.有,解得;(2)不等式的解集为R,则,解得,实数的取值范围为.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.22、(1); (2).【解析】由两点式求出l1的斜率(1)再由两点求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率为0和不为0讨论,当l1的斜率为0时,由M,N的横坐标相等求a得值;不为0时由两直线的斜率乘积等于-1得答案【详解】(1), 即,解得(2),即,解得.【点睛】本题考查了直线的一般式方程与两直线平行、垂直的关系,考查了分类讨论的数学思想方法,是基础题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服