ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:189KB ,
资源ID:6380588      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6380588.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江苏省宿迁市宿豫区陆集初级中学中考数学-第25讲-圆的认识与圆的位置关系复习讲义-苏科版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省宿迁市宿豫区陆集初级中学中考数学-第25讲-圆的认识与圆的位置关系复习讲义-苏科版.doc

1、第25讲 圆的认识与圆的位置关系 知识点:一、圆 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧

2、组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。二、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。 经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的

3、直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对

4、的弧也相等。 推理2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。 推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 六、圆的内接四边形 多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫这个多边形的外接圆 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 七、直线和圆的位置关系 1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线 直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。 直线和圆没有公

5、共点时,叫直线和圆相离。 2、若圆的半径为r,圆心到直线的距离为d,则: 直线和圆相交dr;直线和圆相切dr;直线和圆相离dr;直线和圆相交dr 例如:图62中,直线与圆O相割,有:rd 图63中,直线与圆O相切,rd 图64中,直线与圆O相离,rd八、切线的判定和性质 切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。(1.连半径,证垂直;2.作垂直,证半径) 切线的性质:圆的切线垂直于经过切点的半径(遇切线,连半径)推理1:经过圆心且垂直干切线的直线必经过切点。推理2:经过切点且垂直于切线的直线必经过圆心。 例如图65中,O为圆心,AC是切线,D为切点。 B90, 则有BC是切

6、线, OD是半径, ODAC 九、三角形的内切圆 要求会作图,使它和己知三角形的各边都相切 分角线上的点到角的两边距离相等。两条分角线的交点就是圆心。 这样作出的圆是三角形的内切圆,其圆心叫内心,三角形叫圆的外切三角形。 和多边形各边都相切的圆叫多边形的内切圆,多边形叫圆的外切多边形。 十、切线长定理 经过圆外一点可作圆的两条切线。在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫这点到圆的切线长。 切线长定理从圆外一点引圆的两条切线,它们的切线长相等。圆心和这一点的连线平分两条切线的夹角,如图66 B、C为切点,O为圆心。 ABAC,12 十一、弦切角 顶点在圆上,一边和圆相交,另一边

7、和圆相切的角叫弦切角。 弦切角定理弦切角等于它所央的弧对的圆周角。 推理如果两个弦切角所央的弧相等,那么这两个弦切角也相等。例如图67,AB为切线,则有:CBAE,BAEDCD 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 推理:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 推理:从圆外一点引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等,如图68,若F为切点 则有:AF2=AHAC,AGABAF2 EMMD=BMMG CNNH=DNNE 十三、圆和

8、圆的位置关系如图69 若连心线长为d,两圆的半径分别为R,r,则: 1、两圆外离d Rr; 2、两圆外切d = Rr; 3、两圆相交RrdRr(Rr) 4、两圆内切d = Rr;(Rr) 5、两圆内含dRr。(Rr) 定理相交两圆的连心线垂直平分丙两圆的公共弦。 如图610,O1,O2为圆心,则有:ABO1O2,且AB被O1O2平分 十四、两圆的公切线 和两个圆都相切的直线叫两圆的公切线,两圆在公切线同旁时,叫外公切线,在公切线两旁时,叫内公切线,公切线上两个切点的距离叫公切线的长。 如图611,若 A、B、C、D为切点,则AB为内公切线长,CD为外公切线长 内外公切线中的重要直角三角形,如图

9、612,OO1A为直角三角形。 d2=(Rr)2e2为外公切线长, 又如图 613, OO1C为直角三角形。 d2(R十r)2 e2为内公切线长。 十五、正多边形和圆 各边相等,各角也相等的多边形叫正多边形。 定理:把圆分成n(n3)等分: (l)依次连结各分点所得的多边形是这个圆的内按正多边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。 正多边形各边所对的外接圆的圆心角都相

10、等,叫正多边形的中心角。 正n边形的每个中心角等于 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。 若n为偶数,则正n边形又是中心对称图形,它的中心就是对称中心。 边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。 十六、正多边形的有关计算 正n边形的每个内角都等于 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。正多边形的有关计算都归结为解直角三角形的计算。 十七、圆周长、弧长 1、圆周长C2R;2、弧长 十八、圆扇形,弓形的面积 l、圆面积:; 2、扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做

11、扇形。 在半径为R的圆中,圆心角为n的扇形面积S扇形的计算公式为: 注意:因为扇形的弧长。所以扇形的面积公式又可写为 (3)弓形的面积 由弦及其所对的弧组成的圆形叫做弓形。 弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三角形面积。 十九、圆柱和圆锥的侧面展开图 1、圆柱的侧面展开图 圆柱可以看作是由一个矩形旋转得到的,如把矩形ABCD绕边AB旋转一周得到的图形是一个圆柱。(图6一16) AB叫圆柱的轴,圆柱侧面上平行轴的线段CD, CD,都叫圆柱的母线。 圆柱的母线长都相等,等于圆柱的高。 圆柱的两个底面是平行的。 圆柱的侧面展开图是一个长方形,如图617,其中AB=高,AC=底面圆周长。 S侧面=2Rh 圆柱的轴截面是长方形一边长为h,一边长为2R R是圆柱底半径,h是圆柱的高。见图68(2)圆锥的侧面展开图 圆锥可以看作由一个直角三角形旋转得到。 如图619,把RtOAS绕直线SO旋转一周得到的图形就是圆锥。 旋转轴SO叫圆锥的轴,连通过底面圆的圆心,且垂直底面。 连结圆锥顶点和底面圆的任意一点的SA、SA、都叫圆锥的母线,母线长都相等。 圆锥的侧面展开图如图6一19是一个扇形SAB 半径是母线长,AB是2R。(底面的周长),所以圆锥侧面积为S侧面=RL4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服