ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:718.54KB ,
资源ID:6379762      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6379762.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2023届天津市大港八中高一数学第一学期期末达标检测模拟试题含解析.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023届天津市大港八中高一数学第一学期期末达标检测模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.设向量不共线,向量与共线,则实数(  ) A. B. C.1 D.2 2.函数的定义域是( ) A. B. C. D.(0,4) 3.已知定义在R上的函数满足:对任意

2、则 A. B.0 C.1 D.3 4.命题“任意实数”的否定是() A.任意实数 B.存在实数 C.任意实数 D.存实数 5.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是() A. B. C. D. 6.若集合中的元素是△ABC的三边长,则△ABC一定不是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 7.集合,,则P∩M等于 A. B. C. D. 8.若且则的值是. A. B. C. D. 9.下列关于

3、集合的关系式正确的是 A. B. C. D. 10.已知,则“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________ 12.当曲线与直线有两个相异交点时,实数的取值范围是________ 13.已知函数在区间是单调递增函数,则实数的取值范围是______ 14.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______ 15.

4、已知,,则___________. 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证: (1)平面平面; (2)平面平面. 17.已知函数为奇函数. (1)求实数的值,并用定义证明是上的增函数; (2)若关于的不等式的解集非空,求实数的取值范围. 18.已知函数是偶函数. (1)求实数的值; (2)若函数,函数只有一个零点,求实数 的取值范围. 19.已知角的终边过点,且. (1)求的值; (2)求的值. 20.已知二次函数. (1)若

5、函数满足,且.求的解析式; (2)若对任意,不等式恒成立,求的最大值. 21.已知函数,函数的最小正周期为. (1)求函数的解析式,及当时,的值域; (2)当时,总有,使得,求实数m的取值范围. 参考答案 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、A 【解析】由向量共线定理求解 【详解】因为向量与共线,所以存在实数,使得, 又向量不共线,所以,解得 故选:A 2、C 【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可. 【详解】由, 故选:C 3、B 【解析】,且,又,

6、由此可得,,是周期为的函数,,,故选B. 考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察. 【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可. 4、B 【解析】根据含全称量词的命题的否定求解. 【详解】根据含量词命题的否定, 命题“任意实数”的否定是存在实数, 故选:B 5、B 【解析】结合指数函数和对数函数的图像即可. 【详解】是定义域为R的增函数, :-x>0,则x<0. 结合选项只有B符合 故选:B 6、D 【解析】根据

7、集合元素的互异性即可判断. 【详解】由题可知,集合中的元素是的三边长, 则,所以一定不是等腰三角形 故选:D 7、C 【解析】先求出集合M和集合P,根据交集的定义,即得。 【详解】由题得,,则. 故选:C 【点睛】求两个集合的交集并不难,要注意集合P是整数集。 8、C 【解析】由题设,又,则,所以,,应选答案C 点睛:角变换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解. 9、A 【解析】因为{0}是含有一个元素的集合,所以{0}≠,故B不正确; 元素与集合间不能划等号,故C不正确

8、 显然相等,故D不正确. 故选:A 10、C 【解析】利用不等式的性质和充要条件的判定条件进行判定即可. 【详解】因为,,所以成立; 又,,所以成立; 所以当时,“”是“”的充分必要条件. 故选:C. 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11、或 【解析】设所求直线方程为 ,将点代入上式可得或. 考点:直线方程 12、 【解析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围. 【详解】 为恒过的直线 则曲线图象如下图所示:

9、 由图象可知,当直线斜率时,曲线与直线有两个相异交点 与半圆相切,可得: 解得: 又 本题正确结果: 【点睛】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆. 13、 【解析】求出二次函数的对称轴,即可得的单增区间,即可求解. 【详解】函数的对称轴是,开口向上, 若函数在区间单调递增函数, 则, 故答案为:. 14、 【解析】因为圆心到直线的距离为,所以由题意得 考点:点到直线距离 15、 【解析】根据余弦值及角的范围,应用同角的平方关系求. 【详解】由,,则. 故答案为:

10、 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16、(1)证明见解析 (2)证明见解析 【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立; (2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立. 【小问1详解】 证明:翻折前,,翻折后,则有,, 因为平面,平面,平面, 因为平面,平面,平面, 因为,因此,平面平面. 【小问2详解】 证明:翻折前,在梯形中,,,则, ,则, 翻折后,对应地,,,因为,所以,平面, ,则平面, 平面,因此,平面平面. 17、(1),证明见解析;(2). 【解析】

11、1)由函数奇偶性的性质,求得,再利用函数的单调性的定义与判定方法,即可是上的增函数; (2)由函数为奇函数,且在上单调递增,把不等式转化为在上有解,结合二次函数的性质,即可求解. 【详解】(1)因为定义在上的奇函数,可得,都有, 令,可得,解得, 所以,此时满足, 所以函数是奇函数,所以. 任取,且,则, 因为, 即,所以是上的增函数. (2)因为为奇函数,且的解集非空, 可得的解集非空, 又因为在上单调递增,所以的解集非空, 即在上有解,则满足,解得, 所以实数的取值范围. . 18、(1);(2). 【解析】(1)利用函数为偶函数推出的值,即可求解; (

12、2)根据函数与方程之间的关系,转化为方程只有一个根,利用换元法进行转化求解即可. 【详解】(1)由题意,函数为偶函数,所以, 即,所以, 即,则对恒成立,解得. (2)由只有一个零点, 所以方程有且只有一个实根, 即方程有且只有一个实根, 即方程有且只有一个实根, 令,则方程有且只有一个正根, ①当时,,不合题意; ②当时,因为0不是方程的根,所以方程的两根异号或有两相等正根, 由,解得或, 当,则不合题意,舍去; 当,则,符合题意, 若方程有两根异号,则,所以, 综上,的取值范围是. 19、 (1)(2) 【解析】(1)任意角的三角函数的定义求得x的值,可得

13、sinα和tanα的值,再利用同角三角函数的基本关系,求得要求式子的值; (2)利用两角和差的三角公式、二倍角公式,化简所给的式子,可得结果 【详解】由条件知,解得,故. 故, (1)原式== (2)原式. 【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题 20、(1) (2) 【解析】(1)利用待定系数的方法确定二次函数解析式(2)由二次不等式恒成立,转化参数关系,代入通过讨论特殊情况后配合基本不等式求出最值 【小问1详解】 设, 由已知代入, 得, 对于恒成立, 故,解得,又由,得, 所以;

14、小问2详解】 若对任意,不等式恒成立, ​​​​​​​整理得:恒成立,因为a不为0, 所以,所以, 所以, 令,因为,所以, 若时,此时, 若时,, 当时,即时,上式取得等号, ​​​​​​​综上的最大值为. 21、(1),值域为 (2) 【解析】(1)由正弦函数的周期求得得解析式,利用正弦函数的性质可得函数值域; (2)利用时,的值域是集合的子集,分类讨论求得的最大值和最小值,得出不等关系,从而得出结论 【小问1详解】 ,. 因为,所以,所以的值域为. 【小问2详解】 当时,总有,使得, 即时,函数的值域是的子集,即当时,. 函数,其对称轴,开口向上. 当时,即,可得,, 所以,解得; 当即时,在上单调递减,在上单调递增; 所以,所以. 当时,即,可得,, 所以,此时无解. 综上可得实数m的取值范围为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服