ImageVerifierCode 换一换
格式:PPTX , 页数:17 ,大小:184.41KB ,
资源ID:6346928      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6346928.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高一数学对称问题.pptx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高一数学对称问题.pptx

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,一,.,中心对称,(,关于点的对称,),(,一)点关于点的对称,点,P,1,(x,1,y,1,),关于点,M(m,n),对称的点,P,2,为,(2m-x,1,2n-y,1,);,特别地,P(x,y),关于原点,(0,0),的对称点坐标为,(-x,-y).,练习,:,(1),求点,P(2,5),关于点,Q(-3,-7),的对称点,.,(2),若点,A(0,-3),关于点,M,的对称点为,B(-7,5).,求,M,的坐标,.,(,二)直线关于点的对称,直线,l:Ax+By+C=0,关于点,M(m,n),对称的直

2、线,l,1,的方程为,A(2m-x)+B(2n-y)+C=0.,例,1.,求直线,m:,2x+3y-1=0,关于点,P(1,4),对称的直线,n,的方程,.,解,:(,法一,),直接代入上面结论,(,法二,),在直线,m,上任取两点,A,B.,则,A,B,关于点,P,的对称点落在直线,n,上,.,(,法三,),显然直线,m,和直线,n,是平行直线,因此斜率相等,.,一般地:曲线,f,(,x,,,y,),=0,关于点,M,(,m,,,n,)的对称曲线方程为,f,(,2m-x,,,2n-y,),=0,特别地曲线,f,(,x,,,y,),=0,关于原点(,0,,,0,)的对称曲线方程为,f,(,-x

3、y,),=0 .,二,.,轴对称,(,即关于直线的对称,),例,2.,求点,A(-7,1),关于直线,l:2x-y-5=0,的对称点,B,的坐标,.,解,(,法一,),设,B(m,n,)由点关于直线对称的定义知,:,线段,ABl,即,;=-1 ,线段,AB,被直线,l,平分,即线段,AB,的中点,在直线,l,上,故有,2 -5=0 ,(,一,),点关于直线的对称,:,联立 解得,m=9 n=-7,B(9,-7),(法二)直线,ABl,直线,AB,过点(,-7,,,1,),直线,AB,的方程为,y-1=-,(,x+7,)即,x+2y+5=0,由 解得,即,AB,的中点为(,1,,,-3,

4、又,A,(,-7,,,1,),由中点坐标公式得,B,的坐标为(,9,,,-7,),.,小结,:,求点,P(x,0,y,0,),关于直线,l:Ax+,By+C=0,对称点,Q(x,1,y,1,),的方法,:,(1),(综合求解),由点关于直线对称的定义及直线,l,垂直平分线段,PQ,得方程组,:,由(,1,)(,2,)可解得,x,1,y,1,的值即对称点,Q,的坐标,(2),(分步求解)可先求直线,PQ,的方程,然后解出直线,PQ,与直线,l,的交点即线段,PQ,的中点,M,的坐标,最后利用中点坐标公式,求出对称点,Q,的坐标,.,(,3,),(利用公式)点,P,(,x,0,,,y,0,)关

5、于直线,Ax+By+C=0,的对称点,Q,的坐标为,一般地,:,点(,x,0,,,y,0,)关于直线,y=x,的对称点为(,y,0,,,x,0,),点(,x,0,,,y,0,)关于直线,y=-x,的对称点为(,-y,0,,,-x,0,),点(,x,0,,,y,0,)关于直线,y=x+b,的对称点为(,y,0,-b,,,x,0,+b,),点(,x,0,,,y,0,)关于直线,y=-x+b,的对称点为(,b-y,0,,,-x,0,+b,),点(,x,0,,,y,0,)关于直线,y=0,(即,x,轴)的对称点为(,x,0,,,-y,0,),点(,x,0,,,y,0,)关于直线,x=0,(即,y,轴)

6、的对称点为(,-x,0,,,y,0,),点(,x,0,,,y,0,)关于直线,y=m,的对称点为(,x,0,,,2m-y,0,),点(,x,0,,,y,0,)关于直线,x=n,的对称点为(,2n-x,0,,,y,0,),注:,当对称轴的斜率为,1,或对称轴与,坐标轴垂直,时可用上述方法直接求出对称点的坐标。,(二)直线关于直线的对称,例,3.,求直线,m:x-y-2=0,关于直线,l:3x-y+3=0,对称的直线,n,的方程,.,解,:,设直线,m,l,n,的斜率分别为,k,1,k,K,2,.,由直线关于直线对称的定义知,:,直线,m,到直线,l,的角等于直线,l,到直线,n,的角,.,又,k

7、1,=1,k=3,解得,:k,2,=-7,由 解得,x,y,o,m,n,l,即直线,m,l,n,的交点为,直线,n,的方程为,法,(,二,):,在直线,x-y-2=0,上任取一点如,A(2,0),则,A,关于直,线,l,的对称点,A,1,落,在直线,n,上,然后解出直线,l,和,m,的交点,由直线方程的两点式求出直线,n,的方程,.,例,4.,已知,ABC,的顶点为,A(-3,0),B(0,3),C(3,-12),求,:A,的内角平分线所在的直线方程,.,解,(,法一)设,:A,平分线所在直线,l,的斜率为,k,直线,AC,到,l,的角等于,l,到直线,AB,的角,又,k,AC,=-2,k,

8、AB,=1,K=3-,其方程为,即,(法二)设,A,的内角平分线交直线,BC,与点,T,A,的内角平分线的斜率,K(-2,1),点,T,分有向线段 的比为,设,T,(,x,,,y,),由定比分点坐标公式得:,x,A,B,C,y,o,T,T,由直线方程的两点式求得,A,内角平分线所在直线的方程,问,(,1,),你会用第三种方法解这道题吗?,(,2,)你会求,A,外角平分线所在直线的方程吗?,一般地:求直线关于直线对称的直线方程利用求交点和斜率;也可以转化为求点关于直线的对称点来解决。,特别地:当对称轴所在的直线与坐标轴垂直或斜率为,1,时可用以下结论直接代入;,设直线方程为,f,(,x,,,y,

9、0,则:,直线,f,(,x,,,y,),=0,关于直线,y=x,对称的直线方程为,f,(,y,,,x,),=0,直线,f,(,x,,,y,),=0,关于直线,y=-x,对称的直线方程为,f,(,-y,,,-x,),=0,直线,f,(,x,,,y,),=0,关于直线,y=x+b,对称的直线方程为,f,(,y-b,,,x+b,),=0,直线,f,(,x,,,y,),=0,关于直线,y=-x+b,对称的直线方程,为,f,(,b-y,,,-x+b,),=0,直线,f,(,x,,,y,),=0,关于直线,y=0,(,x,轴)对称的直线方程为,f,(,x,,,-y,),=0,直线,f,(,x,,,y

10、0,关于直线,x=0,(,y,轴)对称的直线方程为,f,(,-x,,,y,),=0,直线,f,(,x,,,y,),=0,关于直线,y=m,对称的直线方程为,f,(,x,,,2m-y,),=0,直线,f,(,x,,,y,),=0,关于直线,x=n,对称的直线方程为,f,(,2n-x,,,y,),=0,三,.,对称问题的应用:,(一)涉及定直线,l,上一点,P,与两定点,A,,,B,的距离和(或差)的最值问题,1.,若,A,,,B,两点在直线的同侧:,(,1,)设点,B,关于直线的对称点为点,C,则直线,AC,与直线,l,的交点,P,使得,|PA|+|PB|,最小;,(,2,)直线,AB,

11、与直线,l,的交点,P,使得,|PA|-|PB|,最大。,2.,若,A,B,两点在直线的异侧,:,(1),直线,AB,与直线,l,的交点,P,使得,|PA|+|PB|,最小,;,(2),设点,B,关于直线的对称点为点,C,则直线,AC,与直线,l,的交点,P,使得,|PA|-|PB|,最大,.,(,二,),涉及角平分线及光线的入射和反射问题一般都转化为对称问题来解决,.,例,5.,已知两点,A(2,15),B(-3,5),在直线,l:3x-4y+4=0,上找一点,P,使得,:,(1)|PA|+|PB|,最小,并求出其最小值,;,(2)|PA|-|PB|,最大,并求出其最大值,.,例,6.,自点

12、A(-3,3),发出的光线,l,射到,x,轴上,被,x,轴反射,其反射光线所在直线与圆,x,2,+y,2,-4x-4y+7=0,相切,求光线,l,所在直线的方程,.,练习题:,(1),点,M(-1,3),关于直线,x+y-1=0,的对称点为,_,关于直线,y=2x,的对称点为,_ _,关于点,(9,0),的对称点为,(2),直线,x+2y-1=0,关于直线,x-y+2=0,的对称直线的方程为,_,关于直线,y=-x,的对称直线为,_,关于直线,x+3=0,对称直线为,_,(3),直线,3x-4y+3=0,关于,x,轴对称的直线方程为,_,关于,y,轴的对称直线方程为,_,关于原点的对称直线方

13、程为,(4),光线从,M(-2,3),射到,x,轴上一点,P(1,0),后被,x,轴反射,则入射光线和反射光线所在的直线方程分别为,_,若光线射到直线,y=2x,上呢,?,(5),光线沿着斜率为 的直线,l,1,射在斜率为 的直线,l,2,上反射,若,l,1,和,l,2,的交点为,(-1,2),求反射光线所在的直线方程,.,(6),已知,ABC,的一个顶点,A(4,-1),其内角,B,C,的平分线方程分别为,y=x-1,和,x=1,求边,BC,AB,所在的直线方程,.,(7),直线,y=2x,是,ABC,中角,C,的平分线所在的直线方程,A(-4,2),B(3,1),求,C,的坐标,并判断,A

14、BC,的形状,.,(8)ABC,的两条高线方程为,2x-3y+1=0,和,x+y=0,顶点,A,的坐标为,(1,2),求,BC,边所在的直线方程,.,(9),已知,ABC,的一个顶点,A(-4,2),中线,BD,CE,所在的直线方程分别为,3x-2y+2=0,和,3x+5y-12=0,求边,BC,所在的直线方程,.,(10),已知,ABC,的一个顶点,A(3,-1),AB,边上的中线所在的直线方程为,6x+10y-59=0B,的平分线所在直线方程为,x-4y+10=0,求边,BC,所在的直线方程,.,(11),已知点,A(2,0),B(-2,-2),在直线,l:x+y-3=0,上求一点,P,使,|PA|+|PB|,最小,变形,:,在,l,上求一点,Q,使得,|QA|-|QB|,最大,.,(12),已知点,A(4,1),B(0,4),在直线,l:3x-y-1=0,上求一点,P,使,|PA|+|PB|,最小,.,变形,:,在直线,l,上求一点,Q,使得,|QA|-|QB|,最大,.,再见,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服