ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:38KB ,
资源ID:6278880      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6278880.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(圆锥的体积1.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥的体积1.doc

1、《圆锥的体积》教学设计 尹庄中心小学 僧晓华 一、教学目标 1、知识与技能 理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。 2、过程与方法 通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。 3、情感态度与价值观 渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。 二、教学重、难点 重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。 难点:理解圆锥体积公式的推导过程。

2、 三、教具学具 不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。 四、教学流程 (一)创设情境,提出问题 师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算? 生:我选择底面最大的; 生:我选择高是最高的; 生:我选择介于二者之间的。 师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢? 生:只要求出冰淇淋的体积就可以了。 师:冰淇淋是个什么形状?(圆锥体) 生:你会求吗? 师:通过这节课的学习

3、相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。 评析:这个环节采用学生日常生活中最常见的商场促销活动,让学生初步感知同样的价钱买体积大的物体比较合适。不管选择哪一个,学生都能猜想到:圆锥的体积可能与它的底面、高有关。 (二)设疑激趣,探求新知 师:那么你能想办法求出圆锥的体积吗? (学生猜想求圆锥体积的方法。) 生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。 师:如果这样,你觉得行吗? 教师根据学生的回答做出最后的评价; 生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这

4、样做呢? 师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么? 小组中大家商量。 生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。 师:此种方法是否可行? 学生进行评价。 师:哪个小组还有更好的办法? 生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。) 师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱, 观察比较他们的底与高的大小关系。 1、各小组进行观察讨论。 2、各小组进行交流,教师做适当的

5、板书。 通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。 3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论) 评析:学生虽然意识到可以把圆锥转化成圆柱,那只是一个猜想,需要进一步的验证。至于4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。 师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不

6、行?为什么? 师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系? 生:大约是圆柱的一半。 生:…… 师:到底谁的意见正确呢? 师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧! 要求:1、实验材料,任选沙、米、水中的一种。 2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。 (生进行实验操作、小组交流) 师:1、谁来汇报一下,你们组是怎样做实验的? 2、通过做实验,你们发现它们有什

7、么关系? 生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。 生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。) 师:同学们得出这个结论非常重要,其他组也是这样的吗?生略 师:请看大屏幕,看数学小博士是怎样做的?(课件演示) 齐读结论。 师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式? (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh 师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的

8、体积? (噢!三种冰淇淋的体积原来一样大) 五、联系生活,拓展运用 本练习共有三个层次: 1、基本练习 (1)判断对错,并说明理由。 圆柱的体积相当于圆锥体积的3倍。( ) 一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( ) 一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( ) (2)计算下面圆锥的体积。(单位:厘米) s=25.12 h=2.5 r=4, h=6 2、变形练习 出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子, 得到了以下信息:底面半径:2

9、米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米, (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗? (2)、找一找这些计算方法有什么共同的特点? V锥=1/3Sh (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深? 3、拓展练习 一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨? 活动五:整理归纳,回顾体验 六、评价体验 这节课你们有什么收获?能告诉老师吗? 圆锥的体积课后反思 尹庄镇中心小学

10、 僧晓华 今天的一节《圆锥的体积》,以及各位老师的亲切指点,让我受益匪浅,针对这节课,我有以下的几点感受: 1、《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,以有趣的实验活动,利用转化的思想归纳出圆锥的体积。 2、圆锥的体积推导,重在“等底等高上”,教学中,我打破了以往的常规,让学生估猜圆柱与圆锥之间的关系,然后让学生验证,什么情况下是正好三次倒完沙子。学生学得愉快,记得牢固。为此,又专门设计了板书,让学生从直观上去理解新知,掌握新知。 3、在教学的设计上,对于圆锥体

11、积公式的推导实验,太死板,没有让学生有多样化的选择,在出示圆柱和圆锥的时候,应出示不同的圆柱和圆锥,让学生选择怎样的圆柱和圆锥适合做实验。这样,技能增加课堂的有趣性,还能激发学生更多的学习热情。 4、在教学过程中,没能透彻的运用转化的思想,验证、交流,体会圆锥的体积其实可以转化成求圆柱的体积。在归纳出圆锥与等底等高的圆柱之间的关系时,教师过于急切,没能让学生细细体会它们之间的关系。 5、在学生的自主练习中,没有让学生充分发挥自主的作用,教师总是怕学生不会,总是以一遍又一遍的语言提醒。在学生已有了一定计算基础后,教师应该放手让学生自己去完成,教师这时只能起到一到辅助的作用。 还有,就是时间

12、有的浪费,前面说的太多,导致我今天一节课的内容都没有来得及完成。 以上是我对于自己这节课的一点看法,在今后的课中,我有以下几点需要注意: 1、课前的备课应该更加深入透彻一点,不仅要看教案,还要有自己的一点想法,把书中的每一个细节都备清楚,明白。更重要的是要再加强对学生的预设。 2、课中时间的安排应该合理。每一部分有哪些内容,应花多少时间都应该充分预设,虽说不要掐住一秒,但在课前也应该事先把握一下,如果是上公开课,有条件的话,最好是能借班试上,先有个时间的把握。 3、对练习、作业的讲解。课中完成的练习,如果学生能掌握方法,并能运用它,那教师只起到一个辅导的作用,只需要略微讲解一下。对于学生的家庭作业和课外作业,教师应根据学生的完成情况,予以重点讲解。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服