ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.01MB ,
资源ID:6271962      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6271962.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(上海市浦东新区2013届高三数学下学期二模试题-理(上海浦东新区二模)沪教版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

上海市浦东新区2013届高三数学下学期二模试题-理(上海浦东新区二模)沪教版.doc

1、浦东新区2013年高考预测数学试卷(理科)注意:1. 答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分,每小题4分);本大题共有14小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1已知复数满足(其中i为虚数单位),则= .2已知集合A,B,且,则实数a的值是 .3某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.4函数与的图像关于直线对称,则 .5把三阶行列式中第

2、1行第3列元素的代数余子式记为,则关于 的不等式的解集为 . 6若双曲线的渐近线方程为,它的一个焦点是,则双曲线的标准方程是 .7若直线与圆有公共点,则实数的取值范围是 .8记直线:()与坐标轴所围成的直角三角形的面积为,则 .9在中,角A、B、C所对的边分别为、,若,则 .10若等式对一切都成立,其中,为实常数,则 .11方程在区间上解的个数为 . 12某人从标有1、2、3、4的四张卡片中任意抽取两张.约定如下:如果出现两个偶数或两个奇数,就将两数相加的和记为;如果出现一奇一偶,则将它们的差的绝对值记为,则随机变量的数学期望为 .13如果是函数图像上的点,是函数图像上的点,且两点之间的距离能

3、取到最小值,那么将称为函数与之间的距离.按这个定义,函数和之间的距离是 .14数列满足()存在可以生成的数列是常数数列;“数列中存在某一项”是“数列为有穷数列”的充要条件;若为单调递增数列,则的取值范围是;只要,其中,则一定存在;其中正确命题的序号为 .二、选择题(本大题共有4题,满分20分); 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.15“a1”是“直线l1:ax2y10与直线l2:x(a1)y40平行”的 ( )充分不必要条件 必要不充分条件 充分必要条件 既不充分也不必要条件16已知则与的夹角为 ( ) 17已知以为周期的函数,其中。若方程恰有5

4、个实数解,则的取值范围为 ( ) 18从集合中任取3个元素组成一个集合,记中所有元素之和被3除余数为的概率为,则的大小关系为 ( ) 三、解答题(本大题共有5题,满分74分);解答下列各题必须写出必要的步骤19(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.如图,已知正四棱柱的底面边长是,体积是,分别是棱、的中点(1)求直线与平面所成的角(结果用反三角函数表示);(2)求过的平面与该正四棱柱所截得的多面体的体积20(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分.已知向量向量与向量的夹角为,且。(1)求向量 ; (2)若向量与共线,

5、向量,其中、为的内角,且、依次成等差数列,求的取值范围21(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.设函数(1)当,画出函数的图像,并求出函数的零点;(2)设,且对任意,恒成立,求实数的取值范围.22(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知直角的三边长,满足(1)在之间插入2011个数,使这2013个数构成以为首项的等差数列,且它们的和为,求的最小值;(2)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;(3)已知成等比数列,若数列满足,证

6、明:数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.23(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.(1)设椭圆:与双曲线:有相同的焦点,是椭圆与双曲线的公共点,且的周长为,求椭圆的方程; 我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.xyo3(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值; (3)由抛物线弧:()与第(1)小题椭圆弧:()所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,且(),试用表示;并求的取值范围. 浦东新区201

7、3年高考预测数学试卷答案一、填空题(本大题满分56分,每小题4分);本大题共有14小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1; 21; 320; 44; 5; 6; 7;8; 94; 10 114; 1213 14。二、选择题(本大题共有4题,满分20分); 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.15 ; 16 ; 17 18 。 三、解答题(本大题共有5题,满分74分);解答下列各题必须写出必要的步骤19 解:(1)连结,直线与平面所成的角等于直线与平面所成的角.连结,连结,是直线与平面所成的角.2分中

8、,4分.直线与平面所成的角等于.6分(2)正四棱柱的底面边长是,体积是,.8分;,11分多面体的体积为.12分(文)(1)连结,,就是异面直线与所成角.2分在,4分,.所以异面直线与所成角为. 6分20 解:(1)设.由,得 2分又向量与向量的夹角为,得 4分由、解得或,或.5分(2)向量与共线知;6分由知.7分, 8分9分.11分,12分得,即,13分.14分21解:(1),2分画图正确.4分当时,由,得,此时无实根;当时,由,得,得.所以函数的零点为.6分(2)由0得,.当时,取任意实数,不等式恒成立.8分当时,.令,则在上单调递增,;10分当时,令, 则在上单调递减,所以在上单调递减.

9、.12分 综合 .14分(文)(2)当时,取任意实数,不等式恒成立;8分当时,令,则在上单调递增,;10分当时,令, 则在上单调递减,单调递增;.12分综合 .14分22解:(1)是等差数列,即.2分所以,的最小值为;4分(2)设的公差为,则5分设三角形的三边长为,面积,.7分由得, 当时,经检验当时,当时,.9分综上所述,满足不等式的所有的值为2、3、4.10分(3)证明:因为成等比数列,.由于为直角三角形的三边长,知,11分又,得,于是.12分,则有.故数列中的任意连续三项为边长均可以构成直角三角形.14分因为 ,15分由,同理可得,故对于任意的都有是正整数.16分(文)(2)设的公差为,

10、则, .5分设三角形的三边长为,面积,7分当为偶数时,;当为奇数时,;9分综上,.10分(3)证明:因为成等比数列,.11分由于为直角三角形的三边长,知,12分又,得.13分于是.14分, 则有.15分故数列中的任意连续三项为边长均可以构成直角三角形.16分23 解:(1)由的周长为得,椭圆与双曲线:有相同的焦点,所以,即,椭圆的方程;4分(2)证明:设“盾圆”上的任意一点的坐标为,.5分当时,即;7分当时,即;9分所以为定值;10分(3)显然“盾圆”由两部分合成,所以按在抛物线弧或椭圆弧上加以分类,由“盾圆”的对称性,不妨设在轴上方(或轴上):xyo当时,此时,;11分当时,在椭圆弧上, 由题设知代入得,整理得,解得或(舍去). 12分当时在抛物线弧上, 由方程或定义均可得到,于是,综上,()或();相应地,14分当时在抛物线弧上,在椭圆弧上,;15分当时在椭圆弧上,在抛物线弧上,;16分当时、在椭圆弧上,;17分综上的取值范围是.18分(文)(3)因为“盾圆”关于轴对称,设于是,所以面积,11分按点位置分2种情况:当在抛物线弧()上时,设所在的直线方程(),联立,得,同理, 面积,所以;14分当在椭圆弧上时, 于是联立,得;即,由,当且仅当等号成立,所以,17分综上等腰面积的最大值为.18分11

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服