ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:28.50KB ,
资源ID:6261545      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6261545.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(反比例函数的图像与性质教学设计与反思.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

反比例函数的图像与性质教学设计与反思.doc

1、 反比例函数的图像与性质教学案彭国盛一、教材分析: 本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。二、教学目标: 1:会画出反比例函数的图象。 2:经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征。 3:让学生体会事物是有规律地变化着的观点。三、 教学重

2、点和难点:教学重点:会画出反比例函数的图象。教学难点:会出画反比例函数的图象。(因为前面学习过的一次函数的图象是一条直线,而反比例函数的图象有两个分支,并且是曲线。学生初次接触有一定的难度。)四、教学过程:(一)、创设情境、提出问题:我们已经知道一次函数的图象是一条直线,那么反比例函数 (k为常数,k0)的图象是什么呢?猜猜看,应该怎么画呢? 让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想(二)、动手实践、解决问题: 1:画图: 画出反比例函数 的图象 在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。 师:画函

3、数图象的第一个步骤是什么?生:列表。师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?生:应注意自变量x的取值范围,本题当中x0。师:是不是把所有的x不等于零的值全都列举出来?生:不是。师:那怎么取值呢?(学生讨论)生:为了便于计算和描点,我们通常取x0和x0的一些整数值。师:(大屏幕投影)那么,对应的y值分别是多少呢? (学生填表、口答答案。) 这里有同学们画的一些反比例函数 的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论) 生 :第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原

4、因是:没有注意到自变量x的取值范围是x0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式 的点,比如横坐标在大于1小于2之间? 师:那么,应当用什么样的线来连接呢?生:应当用平滑的曲线顺次连接。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另

5、一个分支。把两个分支组合在一起就得到了反比例函数 的图象。 二、描点: 三、连接 2:猜想:反比例函数 的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。师:刚才,我们画出了k=6时,反比例函数 的图象。请同学们猜想一下,k=6时,反比例函数 的图象在什么象限?为什么?生:图象分布在二、四象限。由k=6 得x.y=6 所以x、y异号 所以反比例函数 的图象分布在二、四象限。师:请同学们画图验证自己的猜想。(学生画图验证、相互交流成果检验自己的猜想是否正确。)师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数 的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数 的图象具

6、有那些特征 (学生分组讨论)生:一次函数的图象是一条直线,反比例函数 的图象是由两个分支组成的,而且都是曲线;一次函数的图象与x、y轴有交点,反比例函数 的图象与x、y轴没有交点;反比例函数 的图象的两个分支关于原点成中心对称。反比例函数 的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点; 师:反比例函数 的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。3:思考:反比例函数 与 的图象有什么共同特征?师:(大屏幕投影:显示这两个反比例函数的图象)请同学们思考:反比例函数 与 的图象有什么共同特征?学生经过短暂的讨论:都是由两个分支组成的,而且都

7、是曲线;都与x、y轴没有交点;都是中心对称图形;都被坐标轴隔开,都无限地靠近x、y轴; 师:反比例函数 与 的图象的共同特征很多,最主要的共同特征是:它们都是由两个分支组成的,而且都是曲线。教师小结:一般地,反比例函数 (k为常数,k0)的图象是由两个分支组成的。反比例函数的图象属于双曲线。(三)、本节课你学到了什么?有哪些收获? 生:画反比例函数的图象的方法;知道了反比例函数的图象是双曲线;反比例函数的图象不与坐标轴有交点;反比例函数的图象是中心对称图形; 五、教后反思:新课程标准强调教学过程是师生交往、共同发展的互动过程。在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,

8、引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程。课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识。为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点。用科学的方法解决问题,培养学生科学的态度与精神。新课程标准要求,我们应该努力提高计算机技术应用于数学教学过程的水平,把现代信息技术作为学生学习数学和解决问题的强有力的工具,改善学生的学习。为此,本节课大量运用了现代信息技术,如:学生画图个案的评析、多媒体课件填充点的过程演示、用平滑的曲线连接的过程等等。让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握。在整个课堂教学过程中,教师讲的多,给学生提问的时间和机会很少。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服