ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:45.50KB ,
资源ID:6180969      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6180969.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(直接求和公式法.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

直接求和公式法.doc

1、直接求和公式法 对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题:求数列的前n项和Sn 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 分组求和法 所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例题:求S = 12 - 22 + 32 - 42 +

2、 … + (-1)n-1n2(n∈N*) 解:①当n是偶数时:S = (12 - 22) + (32 - 42) + … + [(n - 1)2 - n2] = - (1 + 2 + … + n) = - ②当n是奇数时:S = (12 - 22) + (32 - 42) + … + [(n - 2)2 - (n - 1)2] + n2 = - [1 + 2 + … + (n - 1)] + n2 = - 综上所述:S = (-1)n+1n(n+1) 点拨:分组求和法的实质是:将不能直接求和的数列分解成若干个可以求和的数列,分别求和。 裂项相消法 裂项相消法是将数列的一项拆

3、成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题:求数列(n∈N*)的和 解: 点拨:此题先通过求数列的通项找到可以裂项的规律,再把数列的每一项拆开之后,中间部分的项相互抵消,再把剩下的项整理成最后的结果即可。 错位相减法 错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。 例题:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan① 则:aSn = a

4、2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an - nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n = 若a ≠ 1则: 点拨:此数列的通项是nan,系数数列是:1,2,3……n,是等差数列;含有字母a的数列是:a,a2,a3,……,an,是等比数列,符合错位相减法的数列特点,因此我们通过错位相减得到③式,这时考虑到题目没有给定a的范围,因此我们要根据a的取值情况分类讨论。我们注意到当a=1时数列变成等差数列,可以直接运用公式求值;当a≠1时,可以把③式的两边同时除以(1

5、a),即可得出结果。 倒序相加法 如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2 解:Sn=a1+a2+a3+...+an   ① 倒序得:Sn=an+an-1+an-2+…+a1  ② ①+②得:2Sn=(a1+an)+(a2+an-1)

6、a3+an-2)+…+(an+a1) 又∵a1+an=a2+an-1=a3+an-2=…=an+a1 ∴2Sn=n(a2+an)  Sn=n(a1+an)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 迭代法 迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

7、 例题:已知数列6,9,14,21,30,……其中相邻两项之差成等差数列,求它的前n项和。 解:∵a2 - a1 = 3, a3 - a2 = 5, a4 - a3 = 7 ,…, an - an-1 = 2n-1 把各项相加得:an - a1 = 3 + 5 + 7 + … + (2n - 1) = ∴an = n2 - 1 + a1 = n2 + 5 ∴Sn = 12 + 22 + … + n2 + 5n =+ 5n 点拨:本题应用迭加法求出通项公式,并且求前n项和时应用到了12 + 22 + … + n2=因此问题就容易解决了。 构造法 所谓构造法就是先根据数列的结构及特征

8、进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。 例题:求的和 解: 点拨:本题的关键在于如何构造出等差或等比数列的特征的通项,在这道题的解法中巧妙的运用了这一转化,使得数列的通项具备了等比数列的特征,从而为解题找到了突破口。 待定系数法 用待定系数法求an=Aan-1+B型数列通项 例:数列{an}满足a1=1且an+1+2an=1,求其通项公式。 解:由已知,an+1+2an=1,即an=-2an—1+1    令an+x=-2(an-1+x),则an=-2an-1-3x,于是-3x=1,故x=-13 ∴    an

9、-13 =-2(an-1-13 ) 故{an-13}是公比q为-2,首项为an-13 =23 的等比数列 ∴an-13 =23(-2)n-1=1-(-2)n3 评注:一般地,当A≠1时令an+x=A(an-1+x)有an=A an-1+(A-1)x,则有 (A-1)x=B知x=BA-1 ,从而an+BA-1 =A(an-1+BA-1),于是数列{an+BA-1 }是首项为a1+BA-1 、公比为A的等比数列,故an+BA-1 =(a1+BA-1 )An-1,从而 an=(a1+BA-1 )An-1-BA-1 ;特别地,当A=0时{an}为等差数列;当A≠0,B=0时,数列{an}为

10、等比数列。 推广:对于anan=Aan-1+f(n)(A≠0且A∈R)型数列通项公式也可以用待定系数法求通项公式。 例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。 解:令an+x•13n=2(an+x•13n-1)则an=2an-1+ 2x•13n-1-x•13n=53 x•13n-1=5x•13n 而由已知an=2an-1+13n故5x=1,则x=15 。故an+15 •13n=2(an-1+15 •13n-1) 从而{an+15 •13n}是公比为q=2、首项为a1+15 •13=1615 的等比数列。   于是an+15 •13n=1615 ×

11、2n-1,则an=1615 ×2n-1-15 •13n=115 (2n+3-13n-1) 评注:一般情况,对条件an=Aan-1+f(n)而言,可设an+g(n)=A[an-1+g(n-1)],则有Ag(n-1)-g(n)=f(n),从而只要求出函数g(n)就可使数列{ an+g(n)}为等比数列,再利用等比数列通项公式求出an。值得注意的是an+g(n)与an-1+g(n-1)中的对应关系。特别地,当f(n)=B(B为常数)时,就是前面叙述的例8型。 这种做法能否进一步推广呢?对于an=f(n)an-1+g(n)型数列可否用待定系数法求通项公式呢? 我们姑且类比做点尝试:令an+k(n

12、f(n)[an-1+k(n-1)],展开得到 an =f(n)an-1+f(n)k(n-1)-k(n),从而f(n)k(n-1)-k(n)= g(n),理论上讲,通过这个等式k(n)可以确定出来,但实际操作上,k(n)未必能轻易确定出来,请看下题: 数列{an}满足a1=1且an=n2nan-1+1n+1 ,求其通项公式。    在这种做法下得到n2nk(n-1)-k(n)=1n+1 ,显然,目前我们用高中数学知识还无法轻易地求出k(n)来。 通过Sn求an 例10:数列{an}满足an =5Sn-3,求an。 解:令n=1,有a1=5an-3,∴a1=34 。由an于an

13、 =5Sn-3………① 则        an-1 =5 Sn-1-3………② ①-②得到an-an-1=5(Sn-Sn-1)     ∴an-an-1 =5an    故an=-14 an-1,则{an}是公比为q=-14 、首项an=34 的等比数列,则an=34(-14)n-1 评注:递推关系中含有Sn,通常是用Sn和an的关系an=Sn-Sn-1(n≥2)来求通项公式,具体来说有两类:一是通过an= Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为项与项的关系,再根据新的递推关系求出通项公式;二是通过an= Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为前n项

14、和与前n-1项和的关系,再根据新的递推关系求出通项公式 累加法 例 已知a1=1, an+1=an+2n 求an 解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1 将以上n-1个式子相加可得 an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1 注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法 求通项公式,特别的,当f(n)为常数时,数列即为等差数列。 累乘法 例4 已知a1=1, an=2nan-1(n≥2)求an 解:当n≥2时, =22, =23, =24,… =2n 将以上n-1个式子相乘可得 an=a1.22+3+4+…+n=2 当n=1时,a1=1满足上式 故an=2 (n∈N*) 注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列。 合并法 ...

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服