ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:150.78KB ,
资源ID:6146417      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6146417.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《加减消元法姐方程》教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《加减消元法姐方程》教学设计.doc

1、 7.2 二元一次方程组的解法 加减消元法 教学目标 1.会阐述用加减法解二元一次方程组的基本思路.通过“加减”达到“消元”的目的,从而把二元一次方程组转化为一元一次方程来求解; 2.会用加减法解简单的二元一次方程组. 3.在探究的过程中,获得用加减法解二元一次方程组的初步经验. 4.培养学生观察、归纳、类比、联想以及分析问题、解决问题的能力. 教学重点 学会用加减法解简单的二元一次方程组. 教学难点 准确灵活地选择和运用加减消元法解二元一次方程组. 教学过程 一、 情境导入,初步认识 1.解二元一次方程组的基本思路是什么? 2.用代入法解方程组的关键是什么?

2、 3.你会解下面这个方程组吗? 二、思考探究,获取新知 1.观察方程组: (1)未知数x的系数有什么特点? (2)怎么样才能把这个未知数x消去?这样做的依据是什么? (3)把两个方程的左边与左边相减,右边与右边相减.你得到了什么结果? 9y=-18,(消去了未知数x,达到了消元的目的) y=-2. 把y=-2代入(1),得3x+5×(-2)=5,x=5.所以. 从上面的解答过程中,你发现了二元一次方程组的新的解法吗? 2.解方程组: 看一看:y的系数有什么特点? 想一想:先消去哪一个比较方便呢?用什么方法来消去这个未知数呢? 解:(1)+(2)得, 7x=

3、14, x=2. 把x=2代入(1)得, 6+7y=9, 7y=3, y=. 所以 【归纳结论】 将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解.这种解法叫做加减消元法,简称加减法. 3.讨论:用加减法解二元一次方程组的时候,什么条件下用加法、什么条件下用减法? 当方程组中同一未知数的系数互为相反数时,我们可以把两方程相加,当方程组中同一未知数的系数相等时,我们可以把两方程相减,从而达到消元的目的. 4.解方程组: 问题:能直接相加减消掉一个未知数吗?如何把同一未知数的系数变成一样呢? 解:方法一:利用加减消元法消去未知数y. (1)×3

4、2)×2得, (3)+(4)得,19x=114, x=6. 把x=6代入(2)得,30+6y=42, y=2. 所以. 思考:能否先消去x再求解? 方法二:利用加减消元法消去未知数x. 解:(1)×5,(2)×3,得 (4)-(3)得 38y=76 y=2 把y=2代入(2)得,5x+12=42 x=6 所以. 当同一未知数的系数即不相等也不互为相反数,该如何求解呢? 【归纳结论】 一般步骤是:(1)方程组的两个方程中,如果同一未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;(2)把两个方程的

5、两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程;(4)将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解. 三、运用新知,深化理解 1.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( ) 2.已知方程组中,x、y的值相等,则m等于( ) A.1或-1 B.1 C.5 D.-5 3.解下列方程组: (3) (4) 4.已知关于x,y的二元一次方程y=kx+b的解有. (1)求k,b的值. (

6、2)当x=2时,y的值. (3)当x为何值时,y=3? 【答案】1.B 2.B 3.(1)解:①-②得,-x=-2, 解得x=2, 把x=2代入①得,2+y=1, 解得y=-1. 四、师生互动,课堂小结 先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业 1.布置作业:教材第34页“练习”. 2.完成练习册中本课时练习. 教学反思 用加减法消元的关键是根据方程组中同一未知数的系数的某种特点灵活消元;加减法、代入法都是解二元一次方程组的基本方法,虽然消元的途径不同,但是它们的目的相同,即把“二元”转化为“一元”,可谓“异曲同工”. - 5 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服