ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:306.07KB ,
资源ID:6146167      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6146167.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(直升机阵风响应缓和控制律设计_英文_.pdf)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

直升机阵风响应缓和控制律设计_英文_.pdf

1、DESIGN AND I M PLEM ENTATI ON OF GUST RESPONSEReceived date:2003-06-23;revision received date:2003-10-15ALLEVIATI ON CONTROL SYSTEM FOR HEL ICOPTERSGON G H ua2jun,YA N G Y i2dong(College of A utomation Engineering,NUAA29 Yudao Street,N anjing,210016,P.R.China)Abstract:Gust response alleviation is ve

2、ry i mportant forhelicopters which have strong coupling and vibration.Gust disturbance not only influences the ride quality andthe precision of the weapon delivery,but also affects tothe structural fatigue load and the strength.The methodof an opti mal control law to suppress the gust disturbancefor

3、 helicopters is presented.The opti m ization requires them ini m ization of the vertical overload at the pilots seat,the attitude variation and the control energy consumptionunder the gust disturbance.Based on the original controlsystem,the new system can be easily realized by adding avertical speed

4、 feedback passage.In order to develop thereal2ti me operational flight control system,the opti m izedcontrollawis w ritteninClanguage.Thehybridsi mulations prove that the performance of gust responsealleviationandtheefficiencyofdigitalizationaresatisfactory.Key words:helicopter;gust response;opti ma

5、l control;flight controlCLC number:V 24911Document code:AArticle I D:100521120(2004)0120013205INTRODUCTI ONInorderto meettheneedsincombatm issionsandimprovethesurvivability,helicopters generally fly at very lowaltitudeswherestrong atmospheric disturbances exist.The gust disturbancew ill aggregate th

6、e vibrationof helicopters which are unstable intrinsically inlow altitudes and poor in the ride quality.It alsomakes helicopters of strong coupling difficult tocontrol andcuts downthe precision oftheweapon delivery.From 1974,the control field of hilicoptersput forward many theories based on the acti

7、vecontrolandtheelectricfeedbackofrotorvariablestosuppressthegustresponse1,2,because the rotor of a helicopter is the mostsensitive componenttothe gust disturbance.A zuma and Saito from Tokyo U niversity studiedrotor gustresponses by means ofthelocalmomentumtheory(LM T)3.Bir and Chopraresearched the

8、gust response of the hingelesshelicopter rotor in cruising flight4.However,the gust response of the helicopter rotor is acomplex dynam ic phenomenon.It is very difficultto measure rotor variables directly to realize theelectric feedback.This paper presents a method of measuringflight state variables

9、 so as to keep the attitudesconstant as far as possible.M oreover,the ridequalityrequiresthem inim izationoftheaccelerationoverloadatthepilotsseat.Considering both the attitude and the overload,weavoidthedefectsofaccountingthestabilization of the attitude but neglecting theimprovement of ride qualit

10、y and vice versa in theresearch ofthe gustresponse alleviation.Inorder to realize the digitalization of the flightcontrol system,the optim ized control lawisw ritten in C language.It is proved by hybridsimulationthatthemethodsforoptim izingcontrol law and digitizing are all feasible.M ar.2004T ransa

11、ctions of N anjing U niversity of A eronautics&A stronauticsVol.21 No.11MOTI ON EQUATI ON OF HE-L ICOPTERUNDERVER-TICAL GUST D ISTURBANCEInfluences of the vertical gustWverin theshort2period motion of helicopters are discussedin this paper.A ssume that a helicopter is in levelflight w ith the body a

12、xis close to a horizontalline,andthedirection ofthevertical gustcoincidentw iththeverticalaxisofthehelicopter.Supposing that the upward verticalgust is positive,we have the follow ing short2period small perturbation equation defined in theleft2hand coordinate system5.(FZvZS-FZvZ)vZ-FZ+FZ=FZWYWY+FZvZ

13、Wver(MYvZS-MYvZ)vz-MY+(MYS+MY)=MZWYWY+MYvZWver(1)whereSis the differential operator,vZandvZare the increments of the vertical speed and thevertical acceleration,respectively.andarethe increments of the pitch angle and the pitchangular velocity,WYis the longitudinal controlinput,FZvZ,FZvZ,FZ,FZandFZW

14、Yareaerodynam ic coefficients along the vertical axisZ,MYvZetc.aretheaerodynam ic momentcoefficients about the horizontal axisYandWveris the gust disturbance.In order to realize thefeedback of the state variables,vZ,andare taken to be state variables.The matrix equation of Eq.(1)can bew ritten as fo

15、llow sHX=FX+MU+EWver(2)whereH=FZvZ00MYvZ0MY010F=FZvZFZ-FZMYvZMY-MY001M=FZWYMYWY0TE=FZvZMZvZ0TX=vZ TU=WYWveris the gust model selected to be a discretegust model(1-cos)from M I L28785B.Thestandard form of Eq.(2)may be expressed asX=AX+BU+GWver(3)whereA=H-1F,B=H-1M,G=H-1EThe state equation w ithout th

16、e gust distur2bance isX=AX+BU(4)2DESIGN OF CONTROL LAWIn order to apply the modern control theoryto m inim izing the acceleration overload under thegustdisturbance,wemustfirstw ritetheincremental equation of the overload at the pilots seat located at a distanceLfrom the centre ofgravity of the helic

17、opternZ=aZ?g=(vZ+v0+L)?g(5)wherev0istheflightspeed.W hentheincrementofattackangularvelocityapproaches zero,i.e.v0v0,v0may betaken as the vertical acceleration as the helicopterflies w ith the flight path angular velocity.Lis the vertical acceleration as the helicopterflies w ith angular acceleration

18、L.U sing the state variables from Eq.(3),Eq.(5)may be expressed asnZ=CX+DU(6)whereCandDare constant matrices related tothe aerodynam ic coefficients,control inputs andg,v0,L.From Eq.(6)we know thatnZhassomething to do w ith the state vectorXand canbe controlled w ith input vectorU.In order to realiz

19、e the system and obtain thelinear control law of the optim ized system,thequadratic performance index is defined asJ=0(nZ2+XTQ1X+UTR1U)dt(7)whereQ1andR1are the given positive definitesymmetric matrices.The optimal control lawwhich m inim izes the performance indexJw illm inim ize the acceleration ov

20、erload,the attitude41T ransactions of N anjing U niversity of A eronautics&A stronauticsVol.21variations and the control energy consumption atthe same time.Substituting Eq.(6)into Eq.(7)yieldsJ=0(XTQX+2XTSU+UTRU)dt(8)whereQ=Q1+CTCS=CTDR=R1+DTD(9)It is necessary to change Eq.(8)into astandard quadrat

21、ic form to get the control law,so the cross term 2XTSUshould be elim inated.J=0(XTQMX+UMTRUM)dt(10)whereUM=U+R-1STX(11)QM=Q-SR-1ST(12)To apply the performance index,the stateequation must be w ritten w ith the state vectorXand the control vectorUM.Substituting Eq.(11)into Eq.(4)yieldsX=AMX+BUM(13)wh

22、ereAM=A-BR-1ST(14)Applying the optimal control theory,theoptimalcontrollawwhichm inim izestheperformance indexJis determ ined byUM=-KMX(15)KMis the feedback gain matrixKM=R-1BTP(16)where the positive definite symmetric matrixPisthe solution of the R iccatimatrix equationPAM+AMTP-PBR-1BP=-QM(17)From

23、Eqs.(11,14,16),we have the optimalcontrol lawUdefined by Eq.(4)U=-R-1(BTP+ST)X=KX(18)whereK=-R-1(BTP+ST)(19)By simulation,a set of the best weightfactor matricesR1,Q1andthe correspondingfeedback gain matrixKcan be obtained.3SI M ULATI ON RESULTS ANDSYSTEM REAL IZATI ONDolphinhelicopter of SF I MComp

24、anyinFrance flies at a speed of 22 m?s and an altitudeof 1 000 m.Its longitudinal short2period andsmall perturbation equation under a vertical gustis described in Ref.10.vZ=-01528 5-01005 0901387 5001-11058 3-01001 82-21758 6vZ+01086 30-51590 2u+-01528 50-11058 3Wver(20)N eglecting the disturbance t

25、erm in Eq.(20)and substituting it into Eq.(6),we have thevertical overload at the pilots seat which is 118m from the centre of gravitynZ=CX+DUwhereC=-01248 3-01000 9411768 6D=-11017 98By selecting a set of weight factor matricesR1andQ1,the feedback gain matrixKcan becalculated.Simulation results sho

26、w that ifR1=1Q1=D iag111thesystemw illhavetheidealoverallperformance.This means that it is the mostsuitable forthe vertical overloadnZ,statevariables and the control termuto have thesame weight factors.The solution of R iccati equation is01949 8-01124 801007 03-01124 821674 001253 401007 0301253 401

27、169 1A nd the optimal feedback gain matrix isK=01145-01701-11348The gust model is the discrete gust(1-cost)selected from M I L28785BWver=0vm1-cos(t?tm)?20t 00 t 2tmwherevm=20 m?s,andtm=015 s.Fig.1 show sthe responses of the gust alleviationsystem.51No.1GON G Hua2jun,et al.Design and I mplementation

28、of Gust ResponseCompared w ith responses of the original systemunder the gust disturbance(dotted line in Fig.1),we w illseethatthe peakof overloadresponsesis only one2fourthofthe originalsystem and the peaks of pitch angle and pitchangular velocity are 1?3 and 1?4 of the originalsystem,respectively.

29、Fig.1Responses ofnZ,andvZunder gust disturbanceSimulation of long2periodmotion also show sthatthegustalleviationresponsesaresatisfactoryifthelong2periodmotionisconsidered.Basedontheoriginalattitudecontrolsystem of the helicopter,the gust alleviationcontrol system(Fig.2)can be easily realized byaddin

30、g a vertical speed feedback passage.It isproved by theoretical analyses and simulationthat zero assigned byKS+Kis reasonable tothe attitude control system.Hence,the attitudecontrol system and the gust alleviation systemare compatible w ith each other.Fig.2Block diagram of hybrid si mulationThe hybri

31、d simulation(Fig.3)show s thatdynam ic responses of the gust alleviation arevery close to the digital simulation.This provesthat the development and the realization of thecontroller are both very effective.4CONCLUSI ONThe quadratic and optimal control methodpresented in this paper effectively provid

32、es agust response alleviation control for helicopters.Thecontrolleris veryeasyforengineeringrealization and due considerations are given tovertical overload,attitude variations and controlenergy consumption.The digitalization methodof in flight control system programmed in Clanguage has been proved

33、to be feasible.61T ransactions of N anjing U niversity of A eronautics&A stronauticsVol.21Fig.3Responses of hybrid si mulationReferences:1Taylor R B,Zw icke P E,Gold P,et al.A nalyticaldesign and evaluation of active control system forhelicopter vibration reduction and gust responsealleviationR.NA S

34、A CR 152377,1980.2Chen R T N,L ebacqz J V,A iken E W,et al.He2licopter mathematical modelsandcontrollawdevelopment for handling qualities research R.NA SA2CR22495,1988.3A zuma A,Saito S.Study of rotor gust response bymeans of the local momentum theory J.Journalof the American Helicopter Society.1982

35、27(1):3136.4Bir G S,Chopra I.Gust response of hingeless ro2torsA.The 41st A nnual Forum of the AmericanHelicopter SocietyC.FortWorth,Texas,1985.923928.5Gong Huajun.Design and i mplementation of gustalleviationcontrolsystemforhelicopter D.N anjing:N anjing U niversity of A eronautics andA stronautic

36、s,1990.6Sarathy S,M urthy U R.A n advanced rotorcraftflight si mulation model:parallel i mplementationand performance analysisR.A I AA293235502CP,1993.7Woods2V edeler J A,Pototzky A S,Hoadley S T.Rolling maneuverloadalleviationusingactivecontrolJ.Journal of A ircraft.1995,32(1):6876.8Xiao Yelun,Jin

37、Changjiang.Flight principle in at2mospheric disturbances M.Beijing:N ationalDefence Industry Press,1992.9Norman D C,Hynes R J,Gaangsas D.A n integr2ated maneuver enhancement and gust alleviationmode for the A FT I?F2111 MAWaircraft R.A I AA 18322217,1992.391403.10 Yang Yidong,Gao L ixin.The developm

38、ent of thedigital flight control system operational softwareusingClanguage J.JournalofN anjingU niversity of A eronautics and A stronautics,1990,22(4):106110(in Chinese).直升机阵风响应缓和控制律设计龚华军,杨一栋(南京航空航天大学自动化学院,南京,210016)摘要:阵风响应缓和研究对于具有强耦合和振动的直升机非常重要,阵风扰动不仅影响直升机的乘座品质和武器投放精度,而且影响直升机的疲劳载荷和强度。本文提出直升机抑制阵风扰动的最优控制律设计方法。优化性能指标要求在阵风扰动下驾驶员处法向过载、飞机姿态变化以及控制信号能量损耗最小。最终所综合的系统工程实现简便,只需在直升机姿态控制系统基础上增加垂直升降速率反馈通道即可。最后使用C语言实现控制律并进行半物理仿真,仿真结果表明,控制律优化及数字化实现的效果是令人满意的。关键词:直升机;阵风响应;最优控制;飞行控制中图分类号:V 2491171No.1GON G Hua2jun,et al.Design and I mplementation of Gust Response

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服