ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:104KB ,
资源ID:6133140      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6133140.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【Word版题库】第六章第3讲等比数列及其前n项和.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【Word版题库】第六章第3讲等比数列及其前n项和.doc

1、备课大师:免费备课第一站!第3讲等比数列及其前n项和一、填空题1设数列a前n项和为Sn,a1t,a2t2,Sn2(t1)Sn1tSn0,则an是_数列,通项an_.解析由Sn2(t1)Sn1tSn0,得Sn2Sn1t(Sn1Sn),所以an2tan1,所以t,又t,所以an成等比数列,且anttn1tn.答案等比tn2等比数列an的前n项和为Sn,8a2a50,则_.解 8a2a58a1qa1q4a1q(8q3)0q21q37.答案 73数列an为正项等比数列,若a22,且anan16an1(nN,n2),则此数列的前4项和S4_.解析由a1q2,a1qn1a1qn6a1qn2,得qn1qn6

2、qn2,所以q2q6.又q0,所以q2,a11.所以S415.答案154已知等比数列an的前n项和Snt5n2,则实数t的值为_解析a1S1t,a2S2S1t,a3S3S24t,由an是等比数列知24t,显然t0,所以t5.答案55已知各项都为正数的等比数列an中,a2a44,a1a2a314,则满足anan1an2的最大正整数n的值为_解析由等比数列的性质,得4a2a4a(a30),所以a32,所以a1a214a312,于是由解得所以an8n1n4.于是由anan1an2a3(n3)n3,得n31,即n4.答案46在等比数列an中,an0,若a1a2a7a816,则a4a5的最小值为_解析

3、由已知a1a2a7a8(a4a5)416,所以a4a52,又a4a522(当且仅当a4a5时取等号)所以a4a5的最小值为2.答案 27已知递增的等比数列an中,a2a83,a3a72,则_.解析 an是递增的等比数列,a3a7a2a82,又a2a83,a2,a8是方程x23x20的两根,则a21,a82,q62,q3,q3.答案 8设1a1a2a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值为_解析由题意知a3q,a5q2,a7q3且q1,a4a21,a6a22且a21,那么有q22且q33.故q,即q的最小值为.答案9已知数列xn满足

4、lg xn11lg xn(nN*),且x1x2x3x1001,则lg(x101x102x200)_.解析由lg xn11lg xn(nN*)得lg xn1lg xn1,10,数列xn是公比为10的等比数列,xn100xn10100,x101x102x20010100(x1x2x3x100)10100,lg(x101x102x200)lg 10100100.答案10010已知an是公差不为0的等差数列,bn是等比数列,其中a12,b11,a2b2,2a4b3,且存在常数,使得anlogbn对每一个正整数n时成立,则_.解析由题意,可设an2(n1)d,bnqn1,于是由得解得所以an2n,bn2

5、2n2,代入anlogbn,得2n(2n2)log2,即2n(1log2)2log2,所以解得故224.答案4二、解答题11在等差数列an中,a2a723,a3a829.(1)求数列an的通项公式;来源:(2)设数列anbn是首项为1,公比为c的等比数列,求bn的前n项和Sn.解 (1)设等差数列an的公差是d.依题意a3a8(a2a7)2d6,从而d3.由a2a72a17d23,解得a11.所以数列an的通项公式为an3n2.(2)由数列anbn是首项为1,公比为c的等比数列,来源得anbncn1,即3n2bncn1,所以bn3n2cn1.所以Sn147(3n2)(1cc2cn1)(1cc2

6、cn1)从而当c1时,Snn.当c1时,Sn.来源:数理化网12设各项均为正数的等比数列an的前n项和为Sn,S41,S817.(1)求数列an的通项公式;(2)是否存在最小的正整数m,使得nm时,an恒成立?若存在,求出m;若不存在,请说明理由解 (1)设an的公比为q,由S41,S817知q1,所以得1,17.相除得17,解得q416.所以q2或q2(舍去)由q2可得a1,所以an.(2)由an,得2n12 011,而2102 011恒成立13已知公差大于零的等差数列an的前n项和为Sn,且满足a2a465,a1a518.(1)求数列an的通项公式an.(2)若1i21,a1,ai,a21

7、是某等比数列的连续三项,求i的值;(3)是否存在常数k,使得数列为等差数列?若存在,求出常数k;若不存在,请说明理由解(1)因为a1a5a2a418,又a2a465,所以a2,a4是方程x218x650的两个根又公差d0,所以a2a4.所以a25,a413.所以解得a11,d4.所以an4n3.(2)由1i21,a1,ai,a21是某等比数列的连续三项,所以a1a21a,即181(4i3)2,解得i3.(3)由(1)知,Snn142n2n.假设存在常数k,使数列为等差数列,由等差数列通项公式,可设anb,得2n2(k1)nan22abnb恒成立,可得a2,b0,k1.所以存在k1使得为等差数列

8、14设Sn为数列an的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”(1)若数列2bn是首项为2,公比为4的等比数列,试判断数列bn是否为“和等比数列”;(2)若数列cn是首项为c1,公差为d(d0)的等差数列,且数列cn是“和等比数列”,试探究d与c1之间的关系解(1)因为数列2bn是首项为2,公比为4的等比数列,所以2bn24n122n1,因此,bn2n1,设数列bn前n项和为Tn,则Tnn2,T2n4n2,所以4.因此数列bn是“和等比数列”(2)设数列cn的前n项和为Rn,且k(k0),则由cn是等差数列,得Rnnc1d,R2n2nc1d,所以k.对于nN*都成立,化简得(k4)dn(k2)(2c1d)0,则有因为d0,所以k4,d2c1.因此,d与c1之间的等量关系为d2c1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服