ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:1.27MB ,
资源ID:609893      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/609893.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(荧光碳点的合成、发光机制、...WLEDs中的应用(英文)_岳劲松.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

荧光碳点的合成、发光机制、...WLEDs中的应用(英文)_岳劲松.pdf

1、Cite this:NewCarbonMaterials,2023,38(3):478-495DOI:10.1016/S1872-5805(23)60742-5A review of fluorescent carbon dots:synthesis,photoluminescencemechanism,solid-state photoluminescence and applications in whitelight-emitting diodesYUEJing-song1,YUANFang-yu1,QIUHan-xun1,*,LIYing1,LIJing1,XUEYu-hua1,YAN

2、GJun-he2(1.School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;2.Shanghai Jian Qiao University,Shanghai 201306,China)Abstract:Carbonnanomaterialswithasizeoflessthan10nm,fluorescentcarbondots(CDs),havebeenextensivelyinvestig-ated,duetoth

3、eirexcellentfluorescencetunability,goodbiocompatibility,widerangeofprecursorsandlowcost.Moreover,theirsimplepreparationandexcellentperformanceprovideforawiderangeofapplicationsinthefieldsofopticalsensing,energystorage,biomedicalimaging,andwhitelight-emittingdiodes(WLEDs).Alargenumberofsolid-statepho

4、toluminescentCDshaverecentlybeendevelopedandusedinWLEDs.ThesynthesisstrategiesofCDsarebrieflysummarizedandtheirphotoluminescencemechan-ismsarereviewedaswellastherecentprogressfortheiruseinWLEDs.Finally,prospectsforsolvingthecurrentproblemsandchal-lengesofCDsforWLEDsarebrieflypresentedanddiscussed.Ke

5、y words:Carbondots;Photoluminescence;Solid-statephotoluminescence;WLEDs1IntroductionWorking as a new type of high-efficient light-emittingsource,whitelight-emittingdiodes(WLEDs)openupatechnicalfieldforthelightingindustryandarefarsuperiortotraditionalincandescentlampsintermsofluminousefficiencyandper

6、formance.Typic-ally,there are two routes currently to fabricateWLEDs:Coatingavarietyofmonochromaticphos-phorsonUVchips12orusingphosphorsbybluelight technology to form white light3.Previously,rareearthphosphorswerewidelyusedasthemain-streamluminescentmaterialinWLEDs4.However,thehighcostandtoxicityofr

7、areearthmaterialsseri-ouslyhinderetheir further development.It is there-foreofgreatsignificancetofindanewgreenlumines-cent material with low cost,low toxicity,and withhighphotoluminescence(PL),sothatitcouldbeex-ploitedonalargescale.Asanovelzero-dimensional(0D)carbonnano-materialsdiscoveredin20045,ca

8、rbondotsconsistofacarbonizedcoreandavarietyoffunctionalgroupsonsurfaces,whichareoftenaccompaniedbythedop-ingofheteroatomsincludingB,N,PandS610.Com-paredtotraditionalrareearthluminescentphosphor,CDsfeaturebrightluminescence,easeofpreparationand surface-functionalization,good biocompatibilityaswellasl

9、owcostandlowtoxicity.Thesecharacter-isticsmakeCDssignificantintheapplicationfieldsinvolvingbiology1115,chemicalsensing1618andop-toelectronics1921.AlthoughCDshavebeencatchingconsiderableattentionaslightsourcesforWLEDsandgreat progresses have been made so far,solid-stateCDsstillfaceenormouschallengesa

10、slight-emittingmaterials due to the aggregation-caused quenching(ACQ)effect22.Therefore,currently numerous ef-fortshavebeendevotedtoinhibittheACQeffectandenhance the optical properties of light-emittingdevices,asmaygreatlypromotethedevelopmentandapplicationofCDsinWLEDs.Recently,althoughafewreviewsha

11、vesummar-ized the preparation,luminescence mechanism andapplicationofCDs2325,therealizationofsolid-statefluorescenceofCDsandtheirapplicationsinWLEDshave seldom demonstrated in detail.Herein,webrieflyoverviewtherecentadvancesinthesolid-stateReceived date:2023-03-20;Revised date:2023-04-24Correspondin

12、g author:QIUHan-xun,AssociateProfessor.E-mail:Author introduction:YUEJing-song,MasterStudent.E-mail:第38卷第3期新型炭材料(中英文)Vol.38No.32023年6月NEWCARBONMATERIALSJun.2023photoluminescenceofCDs,andhighlighttheirapplic-ationsinWLEDs,particularlyfocusingonthecurrentproblemsandfutureprospects.Typically,inthefirst

13、section,abriefintroductiontothesynthesisandpre-parationofCDsisaddressed,secondlyfollowedbythe demonstration of photoluminescence mechanismofCDsandthesolid-statephotoluminescence.Inthethirdsection,theapplicationsinWLEDsweredemon-stratedindetail.Finally,thecurrentchallengesofsol-id-stateCDsinWLEDappli

14、cationsandthefeasibleperspectiveswerepresentedaswell.2SynthesisofCDsThemorphology,sizeanddegreeofcarboniza-tionofCDsareintimatelyinfluencedbypreparationmethods.Accordingly,anydifferenceinstructuremaysignificantlyaffectstheperformanceofCDsinapplic-ations.Therefore,preparationtechniquesofCDsarecritica

15、llyimportant.Since CD was discovered,re-searchers have been pursuing simple,efficient andlarge-scaletechniquetoprepareCDsofhigh-quality.Specifically,two types of strategies have been de-velopedtoobtainCDs,namely“Top-down”and“Bot-tom-up”approachesasshowninFig.1(a-crefersto“Top-down”andd-frefersto“Bot

16、tom-up”).Top-down means to cut and destroy largegraphenestructuresofgrapheneoxide(GO),graphenenanosheets,carbon nanotubes(CNTs)etc.by eitherphysical26orchemicaltechniquestoobtainCDs.Themethodsinvolved,suchasarcdischarge5,27,laserab-lation2831,electrochemicalsynthesis3236andsoon,couldefficientlytrans

17、formlargecarbonstructuresin-to CDs.However,the commonly used advancedequipment or unique technologies result in highercosts of CDs.CDs synthesized by the“Top-down”strategypossessexcellentgraphenestructure,butthesurfacesarelessfunctionalizedwithchemicalgroups.As a result,the-stacking interaction may

18、occurbetweenthese CDs,which in turn leads to the de-creaseoffluorescenceefficiency.Whilethe“Bottom-up”referstotheapproachtoobtainCDsbypyrolysisorcarbonizationofcarbon-containingprecursorsuponchemicaltreatments.Thecarbonsourcesofthe“Bottom-up”approachareex-tensive,rangingfromsmallorganicmoleculesorol

19、i-PEG1500N(a)(b)(c)(d)(e)a)b)(f)Emission frompassivated surfacePEGsex=365 nmCAH2OoPDEthanolH2SO4180 oC 9 h150 oC 9 h200 oC 9 h180 oC 9 hex=365 nmex=365 nmex=365 nmb-CDsy-CDsyg-CDsr-CDsArcing400500600Ex 325 nmEm 407 nm300315325335350PL Intensity/(a.u.)Wavelength/nmElectrochemical10 V,2 hBoron doped G

20、QDsB dopedgrapheneGlucosamineUreaDI water80604020DI water80604020PyrolysisN-CQDsN-CQDs/ZnO180 oC 5 minPyrolysis180 oC 5 minGlucosamineZinc acetateUreaPEIGAMicrowaveElectrochemicalsynthesisMicrowave-assistedsynthesisPyrolysis methodHydrothermalmethodLaser ablationArc dischargeFig.1Approachestoprepare

21、CDs:“Top-down”and“Bottom-up”,(a)laserablation28,(b)arcdischarge27,(c)electrochemicalsynthesis33,(d)microwave-assistedsynthesis47,(e)pyrolysisofprecursors54,(f)hydrothermalmethod39.(Reprintedwithpermission)第3期YUEJing-songetal:Areviewoffluorescentcarbondots:synthesis,photoluminescencemechanism479gomer

22、sofcitricacid,urea,polyethyleneglycoltocar-bon-enrichedprecursorsoftea,orangepeelandoth-ersbiomassmaterials.Themostlyusedtechniquesin-clude hydrothermal/solvothermal method3744,mi-crowave-assistedsynthesis4549andpyrolysismethod5055,etc.Comparedtothe“Top-down”strate-gy,CDspreparedbythe“Bottom-up”feat

23、ureahigh-erquantumyield(QY),awidersourceofprecursors,andlowercosts.Inparticular,thehydrothermal/solvo-thermalmethodisregardedasoneofthemostsimpleand inexpensive technique.In these techniques,theprecursorisdissolvedinwaterororganicsolventandplacedinaspeciallydesignedreactionvessel.Thefol-lowingcarbon

24、ization of the precursor is accom-plishedunder high temperature and pressure condi-tions.Byoptimizing precursor species,solvent,andthereactionparametersoftemperatureandtime,thecompositionandPLcolorofCDscanbewellregu-lated.TheCDssynthesizedby“Bottom-up”approachpossessmoresurfacefunctionalgroups,soahi

25、gherQYcanbeachieved.However,theas-receivedmater-ials are often accompanied by many by-products inthe synthesis process.The subsequent post-purifica-tion procedures become necessary to improve thefluorescenceperformance.3 Photoluminescence mechanism ofCDsExcellentfluorescenceemissionisthemostin-heren

26、t and fascinating optical property of CDs.However,the PL mechanism of CDs is not com-pletelyclearsofar.ButwiththeadvancementinCDsresearch,threePLmechanismshavebeenconfirmedby researchers56:the size-dependent emission(de-terminedbythecarboncore)5758,thesurfacedefectstate emission(determined by the ca

27、rbon backboneandtheattachedchemicalgroups)5962,andthemo-lecularstateemission(determinedbyfluorescentmo-lecules linked on the surface or inside the CDs)63.TheseindicatethatCDsexhibitamorecomplexsys-temthantheyareexpected.3.1 Size-dependent emissionIngeneral,thesizeofCDs(80isexcellent).5.2 Electrolumi

28、nescent WLEDsAlthough encouraging progresses have beenmade in the study of photoluminescent WLEDs,safetyproblemscausedbytheleakageofultravioletlightcould never been completely solved.Alternat-ively,CDs with an electroluminescence(EL)prop-ertyweredevelopedtoactasalight-emittinglayerinthe WLED structu

29、re.CDs-based electroluminescentWLEDshaveasandwichstructuresimilartothatofquantumdot-basedWLEDs,whereCDsactasanin-termediate active light-emitting layer surrounded byaninterfacialtransportlayerandanelectrode.Inthetypical structure of CDs-based electroluminescentWLEDs(Fig.10),it could be divided into

30、5 parts,namely:anode,hole transport layer(HTL),activelight-emitting layer(ALL),electron transport layer(ETL)andcathode.Amongthem,theALLconsistsofCDsorCDs/polymermaterials.Whenavoltageisap-HNHAcrylamide(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)0.90.80.70.60.50.40.30.20.11.00.80.60.40.20.01.00.80.60.40.20.0400500

31、600Wavelength/nm700400500600Wavelength/nm7008000.00.80.70.60.50.40.30.2Normalized absorbance1.0IIIIIIIViiiiiiivvviviiviiiixxxixii426529 6030.80.60.40.20.01.00.80.60.40.20.0400500600Wavelength/nm700800Normalized PL intensityo/m/p(CDs)=2:4:1(weight)Ex=365 nm400500600Wavelength/nm700Normalized PL inten

32、sityNormalized intensityIntensity0.10.0Plasma generatorCarbon dotsWhite LEDsH2NH2NH2NH2NNH2NH2Solvothermal180 oC,12 hSolvothermal180 oC,12 hSolvothermal180 oC,12 ho-CDsm-CDsp-CDso-CDs-PVAm-CDs-PVAp-CDs-PVAex=365 nmOFig.8(a-e)SynthesisofbluefluorescentCDsandtheirapplicationinhighcolorrenderingindexWL

33、EDs92,(f)schematicdiagramofpreparationofo-CDs,m-CDsandp-CDs,(g-j)Photographsoffull-colorCDs/PVAfilmsunderUVlightandtheperformanceofWLEDsfabricatedwiththesefilms94.(Reprintedwithpermission)488新型炭材料(中英文)第38卷plied to WLEDs,due to the applied electric field,holes and electrons are injected into the HTL

34、andETL,respectively.After migration,holes and elec-tronsconvergeintheALLandcombinetoproduceexcitonstotriggerthelightemission109.Thelumines-cence of WLEDs could be modulated by changingCDsintheALL.In 2011,Wang and co-workers104 reportedWLEDs assembled from single-component carbondots,whichachievedaCR

35、Iof82atacurrentdensityof5mA/cm2,comparabletothatofsomecommercialWLEDs.Themaximumexternalquantumefficiencyreachedto0.083%,indicatingthegreatpotentialsofCDs as white light electroluminescent devices(Fig.11(a).Later,Jiaetal.110reportedanelectron-donating group passivation strategy to synthesizethree ty

36、pes of red CDs with different emissionwavelengths(Fig.11(d).TheassembledWLEDsex-hibited a maximum brightness of 5248-5909 cd/Aandacurrentefficiencyof3.65-3.85cd/A.Thebright-ness still maintained over 80%of the initial valueafter 50 h of operation,showing excellent stability(Fig.11(e-h).Furthermore,a

37、methodcapableofmod-ulatingWLEDsfromcooltowarmwhitelightwasdeveloped by taking advantage of the luminescenceredshiftsandbroadeningcausedbytheaggregationofCDs,asaccountsfortheWLEDswithtunableCCTsfrom2863to11240K(Fig11(b-c)106.ItisworthnotingthattheseCDs-LEDsachieveamaximumlu-minance of 1414-4917 cd/m2

38、 and high externalquantum efficiencies of 0.08%-0.87%.This workfirstlydemonstratedthatCCT-tunableelectrolumines-centWLEDscouldbeobtainedbycontrollingtheag-gregationofCDs.Recently,ZhousgroupreportedaroutetosynthesizingredCDs(R-CDs)andwhiteCDs(W-CDs)byintroducingfreeradicals.Arecordex-OH(a)(b)(c)OOH2N

39、NH3H2ODaylightUnder UVHO0.5%H2NNH2Single-component white carbon dotsMonochromatic carbon dots382 nm chipWhite LEDsMulticolor LEDsNCoolwhite lightWarmwhite light1%2%4%10%(mass)Aspartic acidMicrowaveheating3 723 K4 344 K3 758 KCRI=91.5(a3)CRI=92.0CRI=87.9400100Spectral composition/%806040200100Spectra

40、l composition/%806040200100Spectral composition/%806040200500600Wavelength/nmIntensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)700800400500600Wavelength/nm700800 400500600Wavelength/nm70080039.7%7.8%6.4%27.9%4.6%13.6%RedOrangeYellowGreenBluePurple622-760 nm597-622 nm577-597 nm492-577 nm435-450 nm400 4

41、35 nm27.7%7.7%7.0%40.0%5.0%13.0%RedOrangeYellowGreenBluePurple622-760 nm597-622 nm577-597 nm492-577 nm435-450 nm400 435 nm33.5%7.3%6.2%28.6%3.9%20.4%RedOrangeYellowGreenBluePurple622-760 nm597-622 nm577-597 nm492-577 nm435-450 nm400 435 nm86%87%79.6%Fig.9(a)SynthesisrouteofW-CDs,photosofW-CDsunderda

42、ylightandUV,anddisplaydiagramofWLEDs101;(b)SynthesisrouteofmulticolorCDs103;(c)ConstructionofWLEDswiththeW-CDspreparedinthecitedarticleandperformanceofthedevicesfabricated103.(Reprintedwithpermission)CathodeETLALLHTLSubstratesLight outputAnodeFig.10IllustrationsofthetypicaldevicestructureofCD-basede

43、lectroluminescentLEDs第3期YUEJing-songetal:Areviewoffluorescentcarbondots:synthesis,photoluminescencemechanism489ternalquantumefficiency(0.95%)wasachievedinthefabrication of electroluminescent WLEDs using W-CDsmentionedabove107.AlthoughfruitfulachievementshavebeenmadewithCDsinWLEDs,someofphotophysical

44、proper-tiesneedtobedeeplyinvestigatedtoenhancethelightstability,colorstability,colorrenderingcapabilityandluminousefficiencyofCDs-WLEDsuntiltheycouldbeusedonalargescale.Inconclusion,CDsshowsgreatpotentialinthefabricationofWLEDs,butmoreeffortsshouldbedevotedtoachievemuchlower-costandhigher-performanc

45、eproducts.6SummaryandoutlookSincethediscoveryoffluorescentCDsin2004,therelatedresearchhasbeenextensivelyconducted,duetotheirexcellentemissionfluorescencetunability,lowtoxicity,goodbiocompatibilityandlowcost.Inthisreview,we summarized the main research pro-gressofCDsintheaspectsofpreparation,photolu-

46、minescencemechanism,solid-state photolumines-cence and applications in WLEDs in recent years.TheseprogressesendowCDswithverybroadapplica-tionprospectandpotentials.Despite the great achievements on CDs,manychallengesstillremain.(1)Thecurrentexistingmech-anismscouldonlybeeffectiveforinterpretingagiv-e

47、nCDmaterial,whichmakesitdifficulttomaximizetheperformanceofCDs-basedWLEDs.Auniversalandcomprehensiveexplanationofthephotolumines-cencemechanism is strongly desired.(2)The re-search and development of solid-state luminescentCDs,especiallytheself-resistantquenchingCDs,stillfacemanychallenges.Thekeypoi

48、ntliesinthestruc-tural characteristics and quenching mechanism ofCDs.MoretheoreticalstudiesshouldbeconductedtomaketheACQphenomenondeterminedbyregulat-ingcarboncoreandsurfacestateexplicit.Inthisre-gard,auniversalmethodisdesirabletobedevelopedto design the structure of CDs and fundamentallysolvetheACQ

49、effect.(3)Althoughexcitingachieve-(b6)(b5)(b4)(b3)(b2)(b1)(c)(h)(g)(f)(e)(d)(a)LiF/AlVacuum levelITO4.7LiF/Al2.840032:1500 600 700 800Wavelength/nmEL intensity/(a.u.)40016:1500 600 700 800Wavelength/nmEL intensity/(a.u.)4008:1500 600 700 800Wavelength/nmEL intensity/(a.u.)4004:1500 600 700 800Wavele

50、ngth/nmEL intensity/(a.u.)4002:1500 600 700 800Wavelength/nmEL intensity/(a.u.)4001:1500 600 700 800Wavelength/nmEL intensity/(a.u.)400Voltage/V50040030020001005004003002000100876543210543210100101102103Current efficiency/(cd/A)Current density/(mA/cm2)Current density/(mA/cm2)Luminance/(cd/m2)1040.0W

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服