ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:994.51KB ,
资源ID:6077519      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6077519.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(解析几何最值和参数范围问题的求解策略.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

解析几何最值和参数范围问题的求解策略.doc

1、解析几何最值和参数范围问题的求解策略解析几何问题常常围绕“形助数”和“数研究形”展开.圆锥曲线的最值和范围问题目标函数化归函数最值求解是通法.若能抓住定义的本质属性和曲线方程的几何特征,往往能寻求到最值问题的简捷解题途径.要充分认识和体验某些几何量的几何意义,重视“形助数”和“数研究形”的简化运算的功能.1(05)全国 P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知求四边形PMQN的面积的最小值和最大值. 解:本小题主要考查椭圆和直线的方程与性质,两条直线垂直的条件,两点间的距离等基本知识及综合分析能力. 突显依据几何条件的特征构建目标函数,换元化归函数值域求解最值。依据四边

2、形对角线垂直的面积公式,“设而不解整体思维”,用弦长公式切入类比,如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQMN,直线PQ、MN中至少有一条存在斜率,不妨设PQ的斜率为k.又PQ过点F(0,1),故PQ方程为将此式代入椭圆方程得设P、Q两点的坐标分别为 (i),同上可类比推得 故四边形面积 如何研究最值?整体变量观念“换元法”简化,因为(ii)当k=0时,MN为椭圆长轴,、,综合(i),(ii)知,四边形PMQN面积的最大值为2,最小值为2 (05广东)在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AOBO(如图4所示).()求AOB

3、的重心G(即三角形三条中线的交点)的轨迹方程;()AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由解: 本小题主要考查椭圆和直线的方程与性质,两条直线垂直的条件,两点间的距离,等基本知识及综合分析能力.构建目标函数化归不等式求最值解决。 代入法求轨迹方程切入,()设AOB的重心为G(),A(),B(),则(1)OAOB (2)又点A,B在抛物线上,有,代入(2)化简得所以重心为G的轨迹方程为(II)构建目标函数,注意为定值用不等式求解由(I)得,当且仅当即时,等号成立. 所以AOB的面积存在最小值,存在时求最小值1;3 (05全国3)设两点在抛物线上,l是AB的垂直平分线

4、. (1)当且仅当取何值时,直线l经过抛物线的焦点F?证明你的结论; (2)当直线l的斜率为2时,求l在y轴上截距的取值范围.解: 借助判别式构建不等式求解范围问题产生思维方法1:(1)两点到抛物线的准线的距离相等.抛物线的准线是x轴的平行线,不同时为0,上述条件等价于, 上述条件等价于 即当且仅当时,l经过抛物线的焦点F.(2)设l在y轴上的截距为b,依题意得l的方程为;过点A、B的直线方程可写为,所以满足方程得;A,B为抛物线上不同的两点等价于上述方程的判别式即 设AB的中点N的坐标为,则由即得l在y轴上截距的取值范围为(). “代点作差,整体思维”探究,用不等式求范围产生思维方法2,(1

5、)由题设AB的斜率必存在.若AB的斜率不为0,用代点作差法构造矛盾若AB的斜率为0,此时A和B在抛物线上且关于y轴对称,此时L为y轴且过抛物线的焦点,且;综上所述,时,直线L过抛物线的焦点;(2)“用代点作差法”沟通关系,均值不等式求值域 ,由(1)“用代点作差法”的探究知4 (04辽宁)设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求:(1)动点P的轨迹方程;(2)的最小值与最大值.4解:本小题主要考查平面向量的概念、直线方程的求法、椭圆的方程和性质等基础知识,以及轨迹的求法与应用、曲线与方程的关系等解析几何的基本思想和综合解

6、题能力. (1)认识向量加法的几何意义化归如何解决弦的中点的轨迹?可选用两种不同的途径。选用通法研究产生思维方法一:直线l过点M(0,1)设其斜率为k,则l的方程为记、由题设可得点A、B的坐标、是方程组 的解. 将代入并化简得,所以于是,设点P的坐标为则消去参数k得 当k不存在时,A、B中点为坐标原点(0,0),也满足方程,所以点P的轨迹方程为选用“代点作差法”产生思维方法二:设点P的坐标为,因、在椭圆上,所以 , 得 ,所以当时,有 ,并且 将代入并整理得 当时,点A、B的坐标为(0,2)、(0,2),这时点P的坐标为(0,0)也满足,所以点P的轨迹方程为 (2)构建目标函数化二次函数在区间

7、上的问题求解,由点P的轨迹方程知所以 故当,取得最小值,最小值为时,取得最大值,最大值为解析几何问题求解的途径为:通法:选择直线方程的形式和圆锥曲线方程联立,化归一元二次次方程有实数解的问题,借助判别式和根与系数的关系沟通整体处理,注意二次项系数不为0和斜率不存在的特殊性的讨论,称为通法。代点作差法:设两点在曲线上适合方程,作差凑“整体斜率“用弦的中点坐标来表示”研究弦的中点有关的问题称为代点作差法。通法下的判别式和弦长公式及韦达定理,代点作差法(揭示了弦斜率整体和弦的中点横、纵坐标的关系)都体现了设而不解,整体思维”.为此,凡涉及弦长,参数范围和存在性问题的讨论常常选用通法. 涉及弦的中点和

8、圆锥曲线上两点关于某直线对称等问题可用代点作差法求解.但用代点作差法必须以直线和圆锥曲线相交为前提.解几最值和范围问题,常常依据题设和解析几何的特征“设而不解,整体思维”,联立方程组化归一元二次方程,借助判别式和根与系数的关系(简称通法),通法下构建目标函数,化归函数的值域问题,用函数的性质或用均值不等式求解;或借助判别式适合的条件构建不等式解最值或范围。1(200 6天津)已知椭圆(),长轴的两个端点为、,若椭圆上存在点,使,则该椭圆的离心率的取值范围是 5过椭圆中心的弦AB,是右焦点,则的最大面积为( ) A, B, C, D,5,A (1)当轴时,;(2)当AB与轴不垂直时,设AB的方程

9、为,由消去得.设,则,.9已知椭圆与直线交于M,N两点,且,(为原点),当椭圆的离心率时,椭圆长轴长的取值范围是 .9, 由,可得 由得,即,将,代入得,即,因为,得,得,有,解得.13设椭圆有一个内接,射线OP与轴正向成角,直线AP,BP的斜率适合条件.(1),求证:过A,B的直线的斜率是定值;(2),求面积的最大值.13,:(1)证明:易知直线OP的方程为,将此方程代入,可求得交点P(1, .由题意可设直线PA,PB的方程分别为和,分别与椭圆方程联立,可求得A,B的横坐标分别为,.从而,所以(定值).(2)不妨设直线AB的方程为,与椭圆方程联立,并消去得+,有 =点P到战线AB的距离,所以

10、=,当且仅当,即时,.14已知点和抛物线上两点使得,求点的纵坐标的取值范围14.解:设点坐标为,点坐标为显然,故由于,所以从而,消去,注意到得:由解得:或当时,点的坐标为;当时,点的坐标为,均满足是题意故点的纵坐标的取值范围是或7(2005全国)若正方形ABCD的一条边在直线上,另外两个顶点在抛物线上.则该正方形面积的最小值为80.解:设正方形的边AB在直线上,而位于抛物线上的两个顶点坐标为、,则CD所在直线的方程将直线的方程与抛物线方程联立,得令正方形边长为则在上任取一点(6,,5),它到直线的距离为.、联立解得或例题椭圆方程为,试确定m的范围,使得对于直线,椭圆上总有不同的两点关于对称.9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服